In situ Biological Groundwater Denitrification: Concepts and Preliminary Field Tests

1988 ◽  
Vol 20 (3) ◽  
pp. 197-209 ◽  
Author(s):  
A. Mercado ◽  
M. Libhaber ◽  
M. I. M. Soares

High nitrate concentration presents the main groundwater quality problem of the Israeli coastal aquifer which supplies 25% of the total water consumption of the country. In about 50% of the coastal wells nitrate concentration exceeds 45 mg/l and in 18% of the wells nitrate concentration is above the maximum permissible concentration of the new Israeli standard - 70 mg/l. Although several protection measures, mainly administrative, were introduced, their impact would be pronounced only after 1-3 decades, thus nitrate removal technologies should be introduced as a mid-term solution. Pilot plant experiments were conducted in order to develop, demonstrate and compare various in-situ schemes for nitrate removal from groundwater by biological denitrification. Activities were focused towards two schemes: (i) Denitrification in a dual purpose (recharge-pumping) well and (ii) Substrate injection through a battery of small diameter wells surrounding a central production well (the “Daisy” system). Experiments related to the first scheme indicate that, though nitrate content can be reduced almost to zero, its economic feasibility seems to be unfavorable because of operational difficulties and the apparent requirements for costly supplementary treatment. Experiments related to the “Daisy” scheme demonstrated a nitrate removal efficiency of approximately 10%. Considering the fact that only one injection well of the three drilled functioned properly, the above mentioned nitrate removal represents the efficiency of a single injection well. It is anticipated that further experiments with the “Daisy” system consisting of 5-6 injection wells would result in a significant nitrate reduction.

1992 ◽  
Vol 26 (7-8) ◽  
pp. 1493-1502 ◽  
Author(s):  
M. F. Dahab ◽  
P. Y. Lee

This paper reports the results of a preliminary investigation designed to assess the potential of using in-situ bio-denitrification to reduce nitrate concentration in contaminated groundwater. The main objectives were to identify problems that may be expected to arise in in-situ groundwater denitrification; study chemical, physical and biological factors controlling subsurface bio-denitrification; and evaluate the effects of biological reactions on the resulting groundwater quality. Results confirm the technical feasibility of using in-situ nitrate removal. The relative stability of denitrification performance was observed at high carbon concentration (C:N=1.5), providing a maximum nitrate removal efficiency of 80%. The proliferation of biomass profoundly affected the potential interactions of contaminants and microorganism in subsurface region. Relatively high solids accumulation in the vicinity of the wells and their nearby aquifer matrix caused severe clogging problems and created high head-loss in the aquifer system.


1988 ◽  
Vol 20 (3) ◽  
pp. 215-219 ◽  
Author(s):  
V. Janda ◽  
J. Rudovský ◽  
J. Wanner ◽  
K. Marha

Pilot-plant and full scale studies of the in-situ biological denitrification of drinking water form the subject of this paper. Ethyl alcohol as a source of organic carbon was used in both cases. Good results were obtained during the pilot-plant study. The full-scale experiment was carried out as a system of four injection wells and one central collection well. Promising results were obtained when diluting water was recirculated into the injection wells to improve mixing of substrate in ground water. The efficiency of nitrate removal was about 50%.


2006 ◽  
Vol 6 (2) ◽  
pp. 125-130
Author(s):  
C.-H. Hung ◽  
K.-H. Tsai ◽  
Y.-K. Su ◽  
C.-M. Liang ◽  
M.-H. Su ◽  
...  

Due to the extensive application of artificial nitrogen-based fertilizers on land, groundwater from the central part of Taiwan faces problems of increasing concentrations of nitrate, which were measured to be well above 30 mg/L all year round. For meeting the 10 mg/L nitrate standard, optimal operations for a heterotrophic denitrification pilot plant designed for drinking water treatment was investigated. Ethanol and phosphate were added for bacteria growing on anthracite to convert nitrate to nitrogen gas. Results showed that presence of high dissolved oxygen (around 4 mg/L) in the source water did not have a significantly negative effect on nitrogen removal. When operated under a C/N ratio of 1.88, which was recommended in the literature, nitrate removal efficiency was measured to be around 70%, sometimes up to 90%. However, the reactor often underwent severe clogging problems. When operated under C/N ratio of 1.0, denitrification efficiency decreased significantly to 30%. Finally, when operated under C/N ratio of 1.5, the nitrate content of the influent was almost completely reduced at the first one-third part of the bioreactor with an overall removal efficiency of 89–91%. Another advantage for operating with a C/N ratio of 1.5 is that only one-third of the biosolids was produced compared to a C/N value of 1.88.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3390
Author(s):  
Hui Zhang ◽  
Lin Song ◽  
Xiaolin Chen ◽  
Pengcheng Li

Excessive use of nitrogen fertilizer in intensively managed agriculture has resulted in abundant accumulation of nitrate in soil, which limits agriculture sustainability. How to reduce nitrate content is the key to alleviate secondary soil salinization. However, the microorganisms used in soil remediation cause some problems such as weak efficiency and short survival time. In this study, seaweed polysaccharides were used as stimulant to promote the rapid growth and safer nitrate removal of denitrifying bacteria. Firstly, the growth rate and NO3−-N removal capacity of three kinds of denitrifying bacteria, Bacillus subtilis (BS), Pseudomonas stutzeri (PS) and Pseudomonas putida (PP), were compared. The results showed that Bacillus subtilis (BS) had a faster growth rate and stronger nitrate removal ability. We then studied the effects of Enteromorpha linza polysaccharides (EP), carrageenan (CA), and sodium alginate (AL) on growth and denitrification performance of Bacillus subtilis (BS). The results showed that seaweed polysaccharides obviously promoted the growth of Bacillus subtilis (BS), and accelerated the reduction of NO3−-N. More importantly, the increased NH4+-N content could avoid excessive loss of nitrogen, and less NO2−-N accumulation could avoid toxic effects on plants. This new strategy of using denitrifying bacteria for safely remediating secondary soil salinization has a great significance.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4863
Author(s):  
Victor Dyomin ◽  
Alexandra Davydova ◽  
Igor Polovtsev ◽  
Alexey Olshukov ◽  
Nikolay Kirillov ◽  
...  

The paper presents an underwater holographic sensor to study marine particles—a miniDHC digital holographic camera, which may be used as part of a hydrobiological probe for accompanying (background) measurements. The results of field measurements of plankton are given and interpreted, their verification is performed. Errors of measurements and classification of plankton particles are estimated. MiniDHC allows measurement of the following set of background data, which is confirmed by field tests: plankton concentration, average size and size dispersion of individuals, particle size distribution, including on major taxa, as well as water turbidity and suspension statistics. Version of constructing measuring systems based on modern carriers of operational oceanography for the purpose of ecological diagnostics of the world ocean using autochthonous plankton are discussed. The results of field measurements of plankton using miniDHC as part of a hydrobiological probe are presented and interpreted, and their verification is carried out. The results of comparing the data on the concentration of individual taxa obtained using miniDHC with the data obtained by the traditional method using plankton catching with a net showed a difference of no more than 23%. The article also contains recommendations for expanding the potential of miniDHC, its purpose indicators, and improving metrological characteristics.


2013 ◽  
Vol 807-809 ◽  
pp. 2508-2513
Author(s):  
Qiang Wang ◽  
Wan Long Huang ◽  
Hai Min Xu

In pressure drop well test of the clasolite water injection well of Tahe oilfield, through nonlinear automatic fitting method in the multi-complex reservoir mode for water injection wells, we got layer permeability, skin factor, well bore storage coefficient and flood front radius, and then we calculated the residual oil saturation distribution. Through the examples of the four wells of Tahe oilfield analyzed by our software, we found that the method is one of the most powerful analysis tools.


2009 ◽  
Vol 16 (3) ◽  
pp. 255-272 ◽  
Author(s):  
Guido Carlo Pigliasco

AbstractIntellectual property claims have long been sustained in a way that is now under severe scrutiny. Pacific Island countries continue to face unauthorized uses of their traditional knowledge and practices. In response, international agencies in collaboration with Pacific Island countries are promoting sui generis forms of protection. The Institute of Fijian Language and Culture's Cultural Mapping Programme looks beyond ongoing debates about indigenous collection and digitization of intangible heritage to promote sui generis protection measures in lieu of western intellectual property law. Supported by an Institute grant, the unfolding Sawau Project creates an archive of sites, stories, and shared memories of the Sawau people of Beqa, an island iconic in Fiji for its firewalking practice (vilavilairevo). Advocating a form of social intervention in situ, The Sawau Project has become a collaborative tool to encourage digital documentation, linkages, and institutional collaborations among Fijian communities and their allies to negotiate and promote alternative forms of protection.


2021 ◽  
Author(s):  
Sultan Ibrahim Al Shemaili ◽  
Ahmed Mohamed Fawzy ◽  
Elamari Assreti ◽  
Mohamed El Maghraby ◽  
Mojtaba Moradi ◽  
...  

Abstract Several techniques have been applied to improve the water conformance of injection wells to eventually improve field oil recovery. Standalone Passive flow control devices or these devices combined with Sliding sleeves have been successful to improve the conformance in the wells, however, they may fail to provide the required performance in the reservoirs with complex/dynamic properties including propagating/dilating fractures or faults and may also require intervention. This is mainly because the continuously increasing contrast in the injectivity of a section with the feature compared to the rest of the well causes diverting a great portion of the injected fluid into the thief zone which ultimately creates short-circuit to the nearby producer wells. The new autonomous injection device overcomes this issue by selectively choking the injection of fluid into the growing fractures crossing the well. Once a predefined upper flowrate limit is reached at the zone, the valves autonomously close. Well A has been injecting water into reservoir B for several years. It has been recognised from the surveys that the well passes through two major faults and the other two features/fractures with huge uncertainty around their properties. The use of the autonomous valve was considered the best solution to control the water conformance in this well. The device initially operates as a normal passive outflow control valve, and if the injected flowrate flowing through the valve exceeds a designed limit, the device will automatically shut off. This provides the advantage of controlling the faults and fractures in case they were highly conductive as compared to other sections of the well and also once these zones are closed, the device enables the fluid to be distributed to other sections of the well, thereby improving the overall injection conformance. A comprehensive study was performed to change the existing dual completion to a single completion and determine the optimum completion design for delivering the targeted rate for the well while taking into account the huge uncertainty around the faults and features properties. The retrofitted completion including 9 joints with Autonomous valves and 5 joints with Bypass ICD valves were installed in the horizontal section of the well in six compartments separated with five swell packers. The completion was installed in mid-2020 and the well has been on the injection since September 2020. The well performance outcomes show that new completion has successfully delivered the target rate. Also, the data from a PLT survey performed in Feb 2021 shows that the valves have successfully minimised the outflow toward the faults and fractures. This allows achieving the optimised well performance autonomously as the impacts of thief zones on the injected fluid conformance is mitigated and a balanced-prescribed injection distribution is maintained. This paper presents the results from one of the early installations of the valves in a water injection well in the Middle East for ADNOC onshore. The paper discusses the applied completion design workflow as well as some field performance and PLT data.


2021 ◽  
Author(s):  
Dennis Alexis ◽  
Gayani Pinnawala ◽  
Do Hoon Kim ◽  
Varadarajan Dwarakanath ◽  
Ruth Hahn ◽  
...  

Abstract The work described in this paper details the development of a single stimulation package that was successfully used for treating an offshore horizontal polymer injection well to improve near wellbore injectivity in the Captain field, offshore UK. The practice was to pump these concentrated surfactant streams using multiple pumps from a stimulation vessel which is diluted with the polymer injection stream in the platform to be injected downhole. The operational challenges were maintaining steady injection rates of the different liquid streams which was exacerbated by the viscous nature of the concentrated surfactants that would require pre-dilution using cosolvent or heating the concentrated solutions before pumping to make them flowable. We have developed a single, concentrated liquid blend of surfactant, polymer and cosolvent that was used in near-wellbore remediation. This approach significantly simplifies the chemical remediation process in the field while also ensuring consistent product quality and efficiency. The developed single package is multiphase, multicomponent in nature that can be readily pumped. This blend was formulated based on the previous stimulation experience where concentrated surfactant packages were confirmed to work. Commercial blending of the single package was carried out based on lab scale to yard scale blending and dilution studies. About 420 MT of the blend was manufactured, stored, and transported by rail, road and offshore stimulation vessel to the field location and successfully injected.


2017 ◽  
Vol 10 (6) ◽  
pp. 2077-2091 ◽  
Author(s):  
Sabina Assan ◽  
Alexia Baudic ◽  
Ali Guemri ◽  
Philippe Ciais ◽  
Valerie Gros ◽  
...  

Abstract. Due to increased demand for an understanding of CH4 emissions from industrial sites, the subject of cross sensitivities caused by absorption from multiple gases on δ13CH4 and C2H6 measured in the near-infrared spectral domain using CRDS has become increasingly important. Extensive laboratory tests are presented here, which characterize these cross sensitivities and propose corrections for the biases they induce. We found methane isotopic measurements to be subject to interference from elevated C2H6 concentrations resulting in heavier δ13CH4 by +23.5 ‰ per ppm C2H6 ∕ ppm CH4. Measured C2H6 is subject to absorption interference from a number of other trace gases, predominantly H2O (with an average linear sensitivity of 0.9 ppm C2H6 per  % H2O in ambient conditions). Yet, this sensitivity was found to be discontinuous with a strong hysteresis effect and we suggest removing H2O from gas samples prior to analysis. The C2H6 calibration factor was calculated using a GC and measured as 0.5 (confirmed up to 5 ppm C2H6). Field tests at a natural gas compressor station demonstrated that the presence of C2H6 in gas emissions at an average level of 0.3 ppm shifted the isotopic signature by 2.5 ‰, whilst after calibration we find that the average C2H6 : CH4 ratio shifts by +0.06. These results indicate that, when using such a CRDS instrument in conditions of elevated C2H6 for CH4 source determination, it is imperative to account for the biases discussed within this study.


Sign in / Sign up

Export Citation Format

Share Document