Filtration at Bromma Sewage Treatment Plant

1992 ◽  
Vol 25 (4-5) ◽  
pp. 59-66 ◽  
Author(s):  
C. Andersson ◽  
M. Tendaj ◽  
M. Rothman

The requirements for purification of the sewage will be more stringent in Sweden. For the three plants in Stockholm - Henriksdal, Bromma and Loudden the proposed limit concentrations for BOD7, total phosphorus and total nitrogen are 10, 0.3 and 15 respectively. A limit value of 0.3 mg/l of phosphorus in the effluent will require a filtration stage. In this paper results are presented from filter tests at Bromma sewage treatment plant. The tests were carried out during almost two years and included operation of different types of sand dual-media downflow filters and an upflow filter. The filters were tested with respect to sludge accumulation capacity, suspended solids removal and phosphorus removal at different operation conditions including chemical precipitation in the filters.

1994 ◽  
Vol 29 (10-11) ◽  
pp. 167-174 ◽  
Author(s):  
T. H. Lessel

The upgrading and nitrification was a requirement in 1986 for the conventional sewage treatment plant Geiselbullach, west of Munich, Germany, designed for 250 000 inhabitants equivalents. The possibility was tested to use submerged bio-film reactors in the aeration tanks to increase the MLSS concentration. Half-scale experiments were undertaken with three different reactor types. A rope type material, called Ring-laceR was selected for the large-scale application, because it did not produce anaerobic sludge deposits, as the other tested reactor types did. The design criteria had to be developed. The process operation started in January 1988; a few months later the phosphorus removal by chemical precipitation was also put into operation. After stable conditions were assured the concentration of the MLSS could be increased to about 10 g/l, due to sludge volume indices of about 50, formerly 180 to 300. A nearly complete nitrification was achieved, which could even be continued in winter times at water temperatures of 8 to 10 °C. Many highly developed microorganisms in the sessile sludge occurred (nematodes, tubifex…), which grew excessively under certain conditions and reduced the normal bacteria to unacceptable low quantities. A worm cure could reduce the worms to acceptable counts. Problems with the longtime stability of the material arose and were investigated.


1994 ◽  
Vol 29 (12) ◽  
pp. 279-282 ◽  
Author(s):  
C. Güldner ◽  
W. Hegemann ◽  
N. Peschen ◽  
K. Sölter

The integration of the chemical precipitation unit which would inject a lime solution into a series of mechanical-biological processes, including nitrification/denitrification, and the sludge treatment are the subject of this project. The essential target is the large-scale reconstruction of a mechanical-biological sewage treatment plant with insufficient cleaning performance in the new German states and the adjustment of the precipitation stage to the unsteady inflow of sewage. First results indicate that the pre-treatment performance could be improved by ≅ 20% and the discharge of concentrations of COD, BOD, N and P could be reduced and homogenized. In addition, experiments on hydrolysis and acidifiability of the pre-treatment sludge have been carried out on a laboratory level with the object of making sources of carbon readily available for denitrification. In the course of the experiment, inhibition of fatty acid production by calcareous primary sludge could not be detected. The characteristics of the sludge, such as draining and thickening were considerably improved by the adding of lime.


2001 ◽  
Vol 43 (11) ◽  
pp. 109-117 ◽  
Author(s):  
D. Bixio ◽  
P. van Hauwermeiren ◽  
C. Thoeye ◽  
P. Ockier

The municipal sewage treatment plant (STP) of the city of Ghent (Belgium) has to be retrofitted to a 43%-increase in the nitrogen treatment capacity and to phosphorus removal. Cold weather, dilute sewage and a critical COD over N ratio make the retrofit a challenge for full biological nutrient removal. The potential for fermentation of primary sludge to alter those critical feed sewage characteristics was experimentally evaluated. The idea was that the pinpoint introduction of fermentate could optimise the available reactors by achieving high-rate denitrification and enhanced biological phosphorus removal. The fermentation process was evaluated with a bench scale apparatus. At 20°C (heated process), the hydrolysis yield - expressed in terms of soluble COD - varied from 11% to 24% of the total sludge COD. The fermentation yield expressed in VFA COD varied from 8% to 13% of the total sludge COD. The efficiency of heated fermentation of primary sludge was lower during cold and wet weather, due to the different sewage characteristics, as a result of extended dilution periods and low temperature. The raw sewage, the primary effluent and the fermentate were fractionated according to the requirements for the IAWQ Activated Sludge Model No. 2d. The results clearly show that fermentation in the sewer played an important role and temperature was the driving parameter for the characteristics of the dissolved COD. Instead, the weather flow conditions were the driving parameter for the characteristics of the suspended COD. The results of the detailed fractionation were used as background for process evaluation. The final scenario choice for the retrofit depends on a cost-efficiency calculation.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 355-362 ◽  
Author(s):  
H. A. Feyen

Because of increased effluent quality standards the central sewage treatment plant (STP) of Stolberg is upgraded into a two stage plant according to the AB-process. Special peculiarities of the rebuilding are several combined technologies for nitrogen and phosphorus removal and for the optimization of sludge treatment including energy recovery. Apart from special features of construction and machinery a remarkable process control system is installed, which operates with several linked personal computers instead of a main frame process computer. At the beginning of the reconstruction tests were carried out in a semitechnical pilot plant. Results of these tests as well as first operation results of the large STP allow a good adjustment of the especially high quality standards to be expected.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 827 ◽  
Author(s):  
Yong Li ◽  
Siyuan Zhao ◽  
Jiejie Zhang ◽  
Yang He ◽  
Jianqiang Zhang ◽  
...  

The aerobic denitrifying phosphate accumulating bacteria (ADPB) use NO3− as an electron acceptor and remove nitrate by denitrification and concomitant uptake of excessive phosphorus in aerobic conditions. Activated sludge was collected from the A2O aerobic biological pool of the sewage treatment plant at Hezuo Town, Chengdu City. The candidate ADPB strains were obtained by cultivation in the enriched denitrification media, followed by repeated isolation and purification on bromothymol blue (BTB) solid plates. The obtained candidates were further screened for ADPB strains by phosphorus uptake experiment, nitrate reduction test, metachromatic granules staining, and poly-β-hydroxybutyrate (PHB) staining. The 16 sedimentation ribosome deoxyribonucleic acid (16 S rDNA) molecular technique was used to determine their taxonomy. Further, the denitrification and dephosphorization capacities of ADPB strains were ascertained through their growth characteristics in nitrogen-phosphorus-rich liquid media. The results revealed a total of 25 ADPB strains screened from the activated sludge of the A2O aerobic biological pool of the sewage treatment plant at Hezuo Town. These strains belonged to two classes, four orders, and five genera. Among them, the strain SW18NP2 was a potentially new species in the Acinetobacter genus, while the strain SW18NP24 was a potential new species in the Pseudomonas genus at the time of their characterization. The Acinetobacter was the dominant genus. The obtained ADPB strains demonstrated a rich diversity. The ADPB strains had significant variations in denitrification and dephosphorization capacities. Twenty-three strains exhibited a total phosphorus removal rate of above 50%, and 19 strains exhibited a total nitrogen removal rate of above 50%. The strain SW18NP2 showed the best denitrifying phosphorus removal (DPR) capacity, with a dephosphorization rate of 82.32% and a denitrification rate of 73.73%. The ADPB in the A2O aerobic biological pool of the sewage treatment plant at Hezuo Town demonstrated a rich diversity and a strong DPR capacity.


1996 ◽  
Vol 33 (12) ◽  
pp. 147-153
Author(s):  
M. Rothman ◽  
J. Hultgren

Bromma sewage treatment plant (STP) is one of three plants in Stockholm. To meet more stringent requirements for nutrient removal the plant has been extended with a final filtration stage. Earlier it has not been possible to operate the plant with nitrification during winter time. Bad settling properties of the activated sludge have led to bulking sludge and high concentrations of BOD and phosphorus in the effluent. With the filter stage it is now possible to reduce the load on the biological stage by by-passing part of the flow directly to the filters. The result has been very promising and it seems that the plant can meet the new demands for nitrogen removal without extension of the aerated volumes.


2013 ◽  
Vol 409-410 ◽  
pp. 182-186
Author(s):  
Jun Yin ◽  
Jun Xiang Wang ◽  
Jia Ni Li ◽  
Jing Yi Cui

Based on the problem which is water quality instability and high energy consumption in the running of modified A2/O system in Changchun northern sewage treatment plant, we established the optimum parameters and optimized the operation conditions to provide technical support for the stable operation of the wastewater treatment plant by analyzing effect of the system in different conditions Test results showed the best dissolved oxygen concentration in the end of the aerobic tank, sludge recycling ratio and inner recycling ratio should be chosen 1.5~2.5mg/L, 80% and 180%. The operation results with optimal operation conditions showed that COD, ammonia nitrogen, SS, TN and TP removal rate were 89.07%, 80.44%, 95.27%, 61.09% and 89.88%. The process system effect is stable and effluent can satisfy the sewage discharged standards.


Sign in / Sign up

Export Citation Format

Share Document