Simultaneous Removal of Nitrogen and Phosphorus in Intermittently Aerated 2-Tank Activated Sludge Process Using DO and ORP-Bending-Point Control

1993 ◽  
Vol 28 (11-12) ◽  
pp. 513-521 ◽  
Author(s):  
Kousei Sasaki ◽  
Yasuji Yamamoto ◽  
Kazushi Tsumura ◽  
Shigeru Hatsumata ◽  
Masahiro Tatewaki

The 2-tank intermittent aeration method is an anaerobic-aerobic activated sludge process of time-sharing type in which 2 complete mixing reaction tanks are connected in series, and aeration and agitation are periodically repeated in each tank. We have developed a new control system for the process which can secure anaerobic, anoxic and aerobic conditions through a combination of DO and ORP-Bending-point (corresponding to termination of denitrification) emergence time control. In the 1st tank, nitrification and phosphorus uptake occur in the aeration period, followed by denitrification and phosphorus release in the agitation. The 2nd tank performs nitrification and phosphorus uptake in the aeration and denitrification in the agitation. One cycle of aeration and agitation is approximately 2 hours. This control system was applied to the test plant (influent flow rate: 225 I/day) for two months under the conditions of HRT 16 hours and temperature 20 ±2 °C. We achieved stable and high removal ratios: TOC 94.9 %, T-N 89.4 %, and T-P 95.5 %. We also investigated the mechanisms of nitrogen and phosphorus removal and their material balance.

1996 ◽  
Vol 34 (1-2) ◽  
pp. 111-118 ◽  
Author(s):  
Kousei Sasaki ◽  
Yasuji Yamamoto ◽  
Kazushi Tsumura ◽  
Sachiko Ouchi ◽  
Yutaka Mori

We have developed a new intermittently aerated anaerobic-aerobic activated sludge process. This process employs 2 reactors connected in series, and is capable of controlling the duration of aerobic, anoxic and anaerobic conditions in both reactors by utilizing the ORP bending point, which corresponds to the termination of denitrification. One cycle of aeration and agitation takes approximately 120 minutes. In the 1st reactor, nitrification and phosphorus uptake occur in the aeration period, followed by denitrification and phosphorus release in the agitation period. In the 2nd reactor, nitrification and phosphorus uptake are conducted during aeration, and denitrification and weak phosphorus uptake during agitation. A one-year pilot plant experiment using sewage (22 m3/day) showed stable and high removal ratios of 98% for BOD, 92% for T-N, and 85% for T-P under conditions of HRT 20 hours and water temperature 9∼33°C.


1989 ◽  
Vol 21 (10-11) ◽  
pp. 1161-1172 ◽  
Author(s):  
M. Hiraoka ◽  
K. Tsumura

The authors have been developing a hierarchical control system for the activated sludge process which consists of an upper level system controlling long-term seasonal variations, a control system of intermediate level aiming at optimization of the process and a control system of lower level controlling diurnal changes or hourly fluctuations. The control system using the multi-variable statistical model is one of the most appropriate control systems based on the modern control theory, for applying the lower level control of the activated sludge process. This paper introduces our efforts for developing the reliable data acquisition system, the control experiments applying the AR-model, one of the statistical models which were conducted at a pilot plant and present studies on the system identification and control at a field sewage treatment plant.


1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


2017 ◽  
Vol 14 (2) ◽  
pp. 99-106 ◽  
Author(s):  
Zhengan Zhang ◽  
Shulin Pan ◽  
Fei Huang ◽  
Xiang Li ◽  
Juanfang Shang ◽  
...  

1998 ◽  
Vol 37 (12) ◽  
pp. 141-148 ◽  
Author(s):  
B. K. Lee ◽  
S. W. Sung ◽  
H. D. Chun ◽  
J. K. Koo

The objective of this study is to develop an automatic control system for dissolved oxygen (DO) and pH of the activated sludge process in a coke wastewater treatment plant. A discrete type autotuned proportional-integral (PI) controller using an auto-regressive exogenous (ARX) model as a process model was developed to maintain the DO concentration in aerators by controlling the speed of surface aerators. Also a nonlinear pH controller using the titration curve was used to control the pH of influent wastewater. This control system was tested in a pilot scale plant. During this pilot plant experiment, there was small deviation of pH and the electric power consumption of surface aerators was reduced up to 70% with respect to the full operation when the DO set point was 2 mg/l. For real plant operation with this system, the discrete PI controller showed good tracking for set point change. The electricity saving was more than 40% of the electricity consumption when considering surface aerators. As a result of maintaining the DO constantly at the set point by the automatic control system, the fluctuation of effluent quality was decreased and overall improvement of the effluent water quality was achieved.


2010 ◽  
Vol 113-116 ◽  
pp. 2201-2207 ◽  
Author(s):  
Jun Yin ◽  
Lei Wu ◽  
Ke Zhao ◽  
Yu Juan Yu

In this article, analysis the start-up of A2/O humic activated sludge system phosphorus removal efficiency and the characteristics of anaerobic phosphorus release, aerobic phosphorus uptake, sludge activity and their change in the Series Technologies process. The results show that A2/O humic activated sludge system phosphorus removal rate stabilized at 90.7% ~ 97.6%. Sludge activity except for anoxic zone 2 increased, along the process showed a gradual decrease trend.


1993 ◽  
Vol 28 (10) ◽  
pp. 267-274 ◽  
Author(s):  
M. Imura ◽  
E. Suzuki ◽  
T. Kitao ◽  
S. Iwai

In order to apply a sequencing batch reactor activated sludge process to small scale treatment facilities, various experiments were conducted by manufacturing an experimental apparatus made of a factory-produced FRP cylinder transverse tank (Ø 2,500mm). Results of the verification test conducted for one year by leading the wastewater discharged from apartment houses into the experimental apparatus were as follows. Excellent performance was achieved without any addition of carbon source, irrespective of the organic compound concentration and the temperature of raw wastewater. Organic substances, nitrogen and phosphorus were removed simultaneously. Due to the automated operation format, stable performance was obtained with only periodic maintenance. Though water depth of the experimental plant was shallow, effective sedimentation of activated sludge was continued during the experimental period. Regarding the aerobic and anaerobic process, nitrification and denitrification occurred smoothly.


1998 ◽  
Vol 37 (12) ◽  
pp. 77-85 ◽  
Author(s):  
T. Ohtsuki ◽  
T. Kawazoe ◽  
T. Masui

An intelligent control system for wastewater treatment processes has been developed and applied to fullscale, high-rate, activated sludge process control. In this control system, multiple software agents that model the target system using their own modeling method collaborate by using data stored in an abstracted database named ‘blackboard’. The software agents, which are called ‘expert modules’, include a fuzzy expert system, a fuzzy controller, a theoretical activated sludge model, and evaluators of raw data acquired by various online sensors including a respirometer. In this paper, the difficulties of controlling an activated sludge system by using a single conventional strategy are briefly reviewed, then our approach to overcome these difficulties by using multiple modeling methods in the framework of an ‘intelligent control system’ is proposed. Case studies of applications to a high-rate activated sludge process that treats BOD and nitrogen of human excrement are also presented.


1996 ◽  
Vol 34 (3-4) ◽  
pp. 395-404 ◽  
Author(s):  
H. Yasui ◽  
K. Nakamura ◽  
S. Sakuma ◽  
M. Iwasaki ◽  
Y. Sakai

The authors have presented a new concept of excess sludge elimination treatment with recirculation of sludge via ozonation in the activated sludge process. This paper is intended to clarify the potential application of the process to municipal and industrial wastewater treatments. In a full-scale operational experiment lasting 10 months under 550 kg/d of BOD loading, no excess sludge was needed to be withdrawn and no significant accumulation of inorganic solids occurred in the aeration tank. Most of the inorganic compounds in the sludge were released to the soluble phase. Material balance indicated that one-third of ozonated sludge was mineralized via the recirculation treatment, and thereby the requirement of sludge mass to be treated was 3.3 times as much as sludge to be eliminated. Effluent TOC was slightly higher than under the conventional activated sludge process, indicating that refractory TOC was released from the sludge eliminated by treatment. The amount of released TOC corresponded to less than 2 weight % of eliminated sludge under recirculation rates below 30% of total biomass in the aeration tank in a day, but increased at higher recirculation rates. The operation costs associated with the process were estimated to be lower than those of conventional dewatering and disposal.


Sign in / Sign up

Export Citation Format

Share Document