Management modeling of integrative wastewater treatment and reuse systems

1996 ◽  
Vol 33 (10-11) ◽  
pp. 95-105 ◽  
Author(s):  
Gideon Oron

An integrative approach for wastewater treatment and reuse projects is exemplified. The approach is based on management modeling for optimal wastewater treatment, disposal and reuse. Management modeling takes into account regional and national aspects. These considerations include treatment levels and control, water supply and demand, transportation and storage requirements, technical capabilities and social issues. Attention is also given to environmental pollution and health risks aspects and purpose of wastewater application. The model is based on defining an objective (cost) function to be optimized. The optimum of the objective function is evaluated subject to a series of technological, social, health and environmental constraints. The results provide information regarding the system layout and related optimal investment and operational expenses.

2000 ◽  
Vol 41 (10-11) ◽  
pp. 165-171 ◽  
Author(s):  
G. Oron ◽  
A. Bick

An integrative approach for optimal membrane selection concerning desalting of brackish water is proposed. This approach is based on management modeling for the following subsystems: Intake, pretreatment, Reverse-Osmosis (RO) unit, post-treatment and brine disposal. The management modeling takes into account membrane performance considerations that include treatment levels and technical capabilities. Attention is also given to membrane replacement and permeates salinity. The model is based on defining an objective (cost) function to be optimized. The optimum of the objective function is evaluated, subject to a series of technological and economical constraints. The results provide guidelines for optimal membrane selection, pretreatment technology and information regarding the system layout, optimal investment and water cost. According to the results, a design based on gravity filters and high flux membranes is preferred with respect to minimum permeate cost. Analyzing the results, indicates the sensitivity of the solution to interest rate and electric power cost.


1989 ◽  
Vol 24 (3) ◽  
pp. 463-477
Author(s):  
Stephen G. Nutt

Abstract Based on discussions in workshop sessions, several recurring themes became evident with respect to the optimization and control of petroleum refinery wastewater treatment systems to achieve effective removal of toxic contaminants. It was apparent that statistical process control (SPC) techniques are finding more widespread use and have been found to be effective. However, the implementation of real-time process control strategies in petroleum refinery wastewater treatment systems is in its infancy. Considerable effort will need to be expended to demonstrate the practicality of on-line sensors, and the utility of automated process control in petroleum refinery wastewater treatment systems. This paper provides a summary of the discussions held at the workshop.


2021 ◽  
Vol 13 (3) ◽  
pp. 1426
Author(s):  
Delu Wang ◽  
Xun Xue ◽  
Yadong Wang

The comprehensive and accurate monitoring of coal power overcapacity is the key link and an important foundation for the prevention and control of overcapacity. The previous research fails to fully consider the impact of the industry correlation effect; making it difficult to reflect the state of overcapacity accurately. In this paper; we comprehensively consider the fundamentals; supply; demand; economic and environmental performance of the coal power industry and its upstream; downstream; competitive; and complementary industries to construct an index system for assessing coal power overcapacity risk. Besides; a new evaluation model based on a correlation-based feature selection-association rules-data envelopment analysis (CFS-ARs-DEA) integrated algorithm is proposed by using a data-driven model. The results show that from 2008 to 2017; the risk of coal power overcapacity in China presented a cyclical feature of “decline-rise-decline”, and the risk level has remained high in recent years. In addition to the impact of supply and demand; the environmental benefits and fundamentals of related industries also have a significant impact on coal power overcapacity. Therefore; it is necessary to monitor and govern coal power overcapacity from the overall perspective of the industrial network, and coordinate the advancement of environmental protection and overcapacity control.


Author(s):  
Thomas Mainka ◽  
David Weirathmüller ◽  
Christoph Herwig ◽  
Stefan Pflügl

Abstract Saline wastewater contaminated with aromatic compounds can be frequently found in various industrial sectors. Those compounds need to be degraded before reuse of wastewater in other process steps or release to the environment. Halophiles have been reported to efficiently degrade aromatics, but their application to treat industrial wastewater is rare. Halophilic processes for industrial wastewater treatment need to satisfy certain requirements: a continuous process mode, low operational expenditures, suitable reactor systems and a monitoring and control strategy. The aim of this review is to provide an overview of halophilic microorganisms, principles of aromatic biodegradation, and sources of saline wastewater containing aromatics and other contaminants. Finally, process examples for halophilic wastewater treatment and potential process monitoring strategies are discussed. To further illustrate the significant potential of halophiles for saline wastewater treatment and to facilitate development of ready-to-implement processes, future research should focus on scale-up and innovative process monitoring and control strategies.


2017 ◽  
Vol 76 (5) ◽  
pp. 1225-1233 ◽  
Author(s):  
M. Schäfer ◽  
I. Hobus ◽  
T. G. Schmitt

In the future, an additional potential of control reserve as well as storage capacities will be required to compensate fluctuating renewable energy availability. The operation of energy systems will change and flexibility in energy generation and consumption will rise to a valuable asset. Wastewater treatment plants (WWTPs) are capable of providing the flexibility needed, not only with their energy generators but also in terms of their energy consuming aggregates on the plant. To meet challenges of the future in regard to energy purchase and to participate in and contribute to such a volatile energy market, WWTPs have to reveal their energetic potential as a flexible service provider. Based on the evaluated literature and a detailed analysis of aggregates on a pilot WWTP an aggregate management has been developed to shift loads and provide a procedure to identify usable aggregates, characteristic values and control parameters to ensure effluent quality. The results show that WWTPs have a significant potential to provide energetic flexibility. Even for vulnerable components such as aeration systems, load-shifting is possible with appropriate control parameters and reasonable time slots without endangering system functionality.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Sarker Masud Parvez ◽  
Musarrat Jabeen Rahman ◽  
Rashidul Azad ◽  
Mahbubur Rahman ◽  
Leanne Unicomb ◽  
...  

Abstract Background Supply driven programs that are not closely connected to community demand and demand-driven programs that fail to ensure supply both risk worsening inequity. Understanding patterns of uptake of behaviors among the poorest under ideal experimental conditions, such as those of an efficacy trial, can help identify strategies that could be strengthened in routine programmatic conditions for more equitable uptake. WASH Benefits Bangladesh was a randomized controlled efficacy trial that provided free-of cost WASH hardware along with behavior change promotion. The current paper aimed to determine the impact of the removal of supply and demand constraints on the uptake of handwashing and sanitation behaviors across wealth and education levels. Methods The current analysis selected 4 indicators from the WASH Benefits trial— presence of water and soap in household handwashing stations, observed mother’s hand cleanliness, observed visible feces on latrine slab or floor and reported last child defecation in potty or toilet. A baseline assessment was conducted immediately after enrolment and endline assessment was conducted approximately 2 years later. We compared change in uptake of these indicators including wealth quintiles (Q) between intervention and control groups from baseline to endline. Results For hand cleanliness, the poorest mothers improved more [Q1 difference in difference, DID: 16% (7, 25%)] than the wealthiest mothers [Q5 DID: 7% (− 4, 17%)]. The poorest households had largest improvements for observed presence of water and soap in handwashing station [Q1 DID: 82% (75, 90%)] compared to the wealthiest households [Q5 DID: 39% (30, 50%)]. Similarly, poorer household demonstrated greater reductions in visible feces on latrine slab or floor [Q1DID, − 25% (− 35, − 15) Q2: − 34% (− 44, − 23%)] than the wealthiest household [Q5 DID: − 1% (− 11, 8%). For reported last child defecation in potty or toilet, the poorest mothers showed greater improvement [Q1–4 DID: 50–54% (44, 60%)] than the wealthier mothers [Q5 DID: 39% (31, 46%). Conclusion By simultaneously addressing supply and demand-constraints among the poorest, we observed substantial overall improvements in equity. Within scaled-up programs, a separate targeted strategy that relaxes constraints for the poorest can improve the equity of a program. Trial registration WASH Benefits Bangladesh: ClinicalTrials.gov, identifier: NCT01590095. Date of registration: April 30, 2012 ‘Retrospectively registered’.


2021 ◽  
Author(s):  
Waldir Nagel Schirmer ◽  
Erivelton César Stroparo ◽  
Marlon André Capanema ◽  
Douglas Luiz Mazur ◽  
José Fernando Thomé Jucá ◽  
...  

Abstract Biofilters have been recognized as key technology in the mitigation of greenhouse gases (GHG) emitted by landfills. This study aimed to evaluate the methane (an important GHG) oxidation efficiencies of two experimental biofilters at the municipal landfill of Guarapuava (Brazil) under normal conditions (control column), just using landfill cover soil with low organic matter content, and improved, exploiting dried scum from municipal wastewater treatment plant (SWWTP) mixed with the cover soil (enriched column, with a high organic matter content). The influence of parameters such as the methane inlet loading rates (22 and 44 gCH4.m− 2.d− 1), temperatures, methane concentration in the raw biogas, carbon/nitrogen ratio and moisture content of the packing materials on the oxidation of methane was also evaluated during 25 campaigns. The campaigns with the lowest methane loading rates applied to the biofilters showed the best methane oxidation efficiencies (98.4% and 89.5% in the enriched and control columns, respectively) as compared to campaigns with a higher load (92.6% and 82.6% in the enriched and control columns, respectively). In addition to the loading rates, the methane oxidation efficiencies were highly influenced by the organic matter content and C/N ratio of the packing materials evaluated.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 116
Author(s):  
Yi-Ping Lin ◽  
Ramdhane Dhib ◽  
Mehrab Mehrvar

Polyvinyl alcohol (PVA) is an emerging pollutant commonly found in industrial wastewater, owing to its extensive usage as an additive in the manufacturing industry. PVA’s popularity has made wastewater treatment technologies for PVA degradation a popular research topic in industrial wastewater treatment. Although many PVA degradation technologies are studied in bench-scale processes, recent advancements in process optimization and control of wastewater treatment technologies such as advanced oxidation processes (AOPs) show the feasibility of these processes by monitoring and controlling processes to meet desired regulatory standards. These wastewater treatment technologies exhibit complex reaction mechanisms leading to nonlinear and nonstationary behavior related to variability in operational conditions. Thus, black-box dynamic modeling is a promising tool for designing control schemes since dynamic modeling is more complicated in terms of first principles and reaction mechanisms. This study seeks to provide a survey of process control methods via a comprehensive review focusing on PVA degradation methods, including biological and advanced oxidation processes, along with their reaction mechanisms, control-oriented dynamic modeling (i.e., state-space, transfer function, and artificial neural network modeling), and control strategies (i.e., proportional-integral-derivative control and predictive control) associated with wastewater treatment technologies utilized for PVA degradation.


2020 ◽  
Vol 8 (4) ◽  
pp. 1369-1375

In the present-day world, dominated by technological progress, humanity is beginning to realize the real danger of an environmental disaster, which can become a threat to the existence of contemporary civilization. This realization marked the beginning of the development of new types of economic activities that involve not only economic growth, but also positive impact on the environment and society. The use of environmental technologies in construction can serve an example of such activities and has significant development prospects because it simultaneously solves both social issues of increasing housing security and environmental issues, primarily the energy conservation issue. Based on an expert survey, the key drivers of supply and demand for investments in environmental technologies in the construction sector, as well as the benefits of implementing and using environmental investments, were identified. The article presents the investment experience of the EU countries in the housing development sector.


Sign in / Sign up

Export Citation Format

Share Document