Reactive textile dye colour removal in a sequencing batch reactor

2000 ◽  
Vol 42 (5-6) ◽  
pp. 321-328 ◽  
Author(s):  
N.D. Lourenço ◽  
J.M. Novais ◽  
H.M. Pinheiro

Two sequencing batch reactors (SBRs) with sequenced anaerobic/aerobic phases were used to study biological colour removal from a simulated cotton textile effluent containing an azo reactive dye. One of the reactors was daily fed with Remazol Brilliant Violet 5R dye and the other was used as control. When operating with a sludge retention time (SRT) of 15 days the total COD removal was around 80%, with 30% being removed anaerobically. After 40–50 days of acclimatization the colour removal efficiency reached a maximum, stable value of 90% from a feed dye concentration of 90 mg/l, almost all being removed during the anaerobic phase. This colour removal was attributed to microbial degradation rather than adsorption and colour removal capacity was not lost even after a seven-day absence of dye in the fed substrate. The dye-fed reactor experienced a reduction in the ORP values attained during the non-aerated phase, after acclimatization, an effect not observed in the dye-free control. Under denitrifying conditions it was observed that the decolouration levels achieved in the anaerobic phase decreased from 90% to 70% after only two cycles with a feed containing 45–60 mg NO3/l. Reduction of the SRT value from 15 to 10 days reduced the biomass concentration from 2.0 to 1.2 g VSS/l and lowered colour removal levels from 90% to 30–50%. When the SRT value was increased back to 15 days the colour removal capacity of the system was completely recovered, suggesting that with a SRT of 10 days the adequate microbial population could not be installed in the reactors.

2001 ◽  
Vol 43 (3) ◽  
pp. 315-322 ◽  
Author(s):  
J. Doyle ◽  
S. Watts ◽  
D. Solley ◽  
J. Keller

The nitrogen removal capacity of a suspended culture system treating mature land fill leachate was investigated. Leachate containing high ammonium levels of 300-900 mg N/L was nitrified in a bench scale sequencing batch reactor. Leachate from four different landfills was treated over a two year period for the removal of nitrogen. In this time, a highly specific nitrifying culture was attained that delivered exceptionally high rates of ammonia removal. No sludge was wasted from the system to increase the throughput and up to 13 g/L of MLSS was obtained. Settleability of the purely nitrifying biomass was excellent with SVI less than 40 mL/g, even at the high sludge concentrations. Nitrification rates up to 246 mg N/(L h) (5.91 g N/(L d)) and specific nitrification rates of 36 mg N/(gVSS h) (880 mg N/(gVSS d)) were obtained. The loading to the system at this time allowed complete nitrification of the leachate with a hydraulic retention time of only 5 hours. Following these successful treatability studies, a full-scale plant was designed and built at one of the landfills investigated.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Nur Syamimi Zaidi ◽  
Johan Sohaili ◽  
Khalida Muda ◽  
Mika Sillanpää ◽  
Norelyza Hussein

AbstractLow condition of dissolved oxygen (DO) is commonly associated with sludge bulking problem that was able to disrupt the efficiency of wastewater treatment performances. Relatively, very little attention was paid to the possibility of applying magnetic field in controlling the bulking problem. Hence, this study aims to investigate the performance of magnetic field on biomass properties and its effect on biodegradation under low condition of DO. Two continuous laboratory-scale sequencing batch reactors—Reactor A (SBRA) and Reactor B (SBRB)—were setup. SBRA was equipped with the magnetic device to exhibit magnetic field of 88 mT, while SBRB acted as a control system. The results showed that the biomass concentration in SBRA was higher compared to SBRB. High biomass concentration in SBRA resulted to better settleability with mean SVI of less than 30 mL/g. SBRA also showed consistently high removal performances of organic and inorganic contents compared to SBRB. These observations confirmed that the magnetic field was able to enhance the biomass properties, which further enhance the biodegradation ability of the aerobic bacteria under low DO condition. This also indicates that under the sludge bulking circumstances, the use of magnetic field stands a great chance in maintaining high biodegradation of the treatment system.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 125-133 ◽  
Author(s):  
M. Torregrossa ◽  
G. Di Bella ◽  
G. Viviani ◽  
A. Gnoffo

Aerobic granulation in sequencing batch reactors is widely reported in literature and in particular in SBAR (Sequencing batch airlift reactor) configuration, due to the high localised hydrodynamic shear forces that occur in this type of configuration. The aim of this work was to observe the phenomenon of the aerobic granulation and to confirm the excellent removal efficiencies that can be achieved with this technology. In order to do that, a laboratory-scale plant, inoculated with activated sludge collected from a conventional WWTP, was operated for 64 days: 42 days as a SBAR and 22 days as a SBBC (sequencing batch bubble column). The performances of the pilot plant showed excellent organics removal. COD and BOD removal efficiencies were respectively, 93 and 94%; on the contrary, N-removal efficiency was extremely low (5%–45%). The granules dimensions increased during the whole experimentation; change of reactor configuration contributed to further improve this aspect. The experimental work confirmed the essential role of hydraulic settling time in the formation of aerobic granules and in the sludge settleability and the need to find an optimum between granule size and oxygen supply to achieve good N-removal efficiency.


1997 ◽  
Vol 35 (1) ◽  
pp. 105-112 ◽  
Author(s):  
L. Novák ◽  
M. C. Goronszy ◽  
J. Wanner

Sequencing batch reactors (SBRs) can be successfully operated for both carbon and nutrient removal, including nitrogen and phosphorus. The major elements of design that accomplish population dynamics control to prevent filamentous sludge bulking, cycle time, oxygen supply, biological nitrification, denitrification, phosphorus removal and solids-liquid separation need to be set in such a way that sufficiently optimal conditions are provided to permit the reactions and processes to take place. SBR processing using cyclic activated sludge technology employs biological selectors in the inlet part of the SBR system and a minor sludge recycle stream to ensure influent wastewater is mixed with activated sludge flocs to create favourable conditions for kinetic and metabolic selection of microorganisms producing floccules. Reaction volume, in addition to the designated bottom water level volume, is variable through time fed-batch reactor mode of operation. A mathematical model that describes volume changes and simultaneously the biodegradation kinetics has been developed. The model describes theoretical behaviour of selected parameters of volume, suspended solids concentration, OUR, ammonia and nitrate nitrogen in the selector compartment and the main aerated basin in ideally mixed and filled reactors of the cyclic system during the phase of mixed-fill (selector) and aerated and non-aerated fill (main aeration reactor basin).


Microbiology ◽  
2004 ◽  
Vol 150 (7) ◽  
pp. 2267-2275 ◽  
Author(s):  
Michael Beer ◽  
Yun H. Kong ◽  
Robert J. Seviour

Activated sludge plants designed to remove phosphorus microbiologically often perform unreliably. One suggestion is that the polyphosphate-accumulating organisms (PAO) are out-competed for substrates by another group of bacteria, the glycogen-accumulating organisms (GAO) in the anaerobic zones of these processes. This study used fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) to analyse the communities from laboratory-scale anaerobic : aerobic sequencing batch reactors. Members of the genus Sphingomonas in the α-Proteobacteria were present in large numbers in communities with poor phosphorus removal capacity where the biomass had a high glycogen content. Their ability to store poly-β-hydroxyalkanoates anaerobically, but not aerobically, and not accumulate polyphosphate aerobically is consistent with these organisms behaving as GAO there. No evidence was found to support an important role for the γ-Proteobacteria as possible GAO in these communities, although these bacterial populations have been considered in other studies to act as possible competitors for the PAO.


2014 ◽  
Vol 69 (10) ◽  
pp. 1984-1995 ◽  
Author(s):  
Lana Mallouhi ◽  
Ute Austermann-Haun

Sequencing batch reactors (SBRs) are known for high process stability and usually have a good sludge volume index (SVI). Nevertheless, in many SBRs in Germany for municipal wastewater treatment, scum and foam problems can occur, and SVI can be larger than 200 mL/g. The microscopic investigations of the activated sludge from plants with nitrogen and phosphorus removal have shown that Microthrix parvicella is dominant in the activated sludge in most of them. Studies showed that the optimum growth of M. parvicella is performed at a high sludge age (>20 d) and low sludge load in the range of 0.05–0.2 kg of biochemical oxygen demand per kg of total suspended solids per day (kg BOD5/(TSS·d)). The investigations in 13 SBRs with simultaneous aerobic sludge stabilization (most of them are operated with a system called differential internal cycle strategy sequential batch reactor (DIC-SBR)) show that M. parvicella is able to grow in sludge loads less than 0.05 kg BOD5/(kg TSS·d) as well. To optimize the operation of those SBRs, long cycle times (8–12 h) and dosing of iron salts to eliminate long-chain fatty acids are both recommended. This leads to better SVI and keeps M. parvicella at a low frequency.


2012 ◽  
Vol 66 (8) ◽  
pp. 1722-1727 ◽  
Author(s):  
Lin Liu ◽  
Da-Wen Gao ◽  
Hong Liang

We have investigated the effect of sludge discharge location on the steady-state aerobic granules in sequencing batch reactors (SBRs). Two SBRs were operated concurrently with the same sludge retention time using sludge discharge ports at: (a) the reactor bottom in R1; and (b) the reactor middle-lower level in R2. Results indicate that both reactors could maintain sludge granulation and stable operation, but the two different sludge discharge methods resulted in significantly different aerobic granule characteristics. Over 30 days, the chemical oxygen demand (COD) removal of the two reactors was maintained at similar levels (above 96%), and typical bioflocs were not observed. The average aerobic granule size in R2 was twice that in R1, as settling velocity increased in proportion to size increment. Meanwhile, the production yields of polysaccharide and protein content in R2 were always higher than those in R1. However, due to mass transfer limitations and the presence of anaerobes in the aerobic granule cores, larger granules had a tendency to disintegrate in R2. Thus, we conclude that a sludge discharge port situated at the reactor bottom is beneficial for aerobic granule stability, and enhances the potential for long-term aerobic granule SBR operation.


DYNA ◽  
2015 ◽  
Vol 82 (193) ◽  
pp. 56-61 ◽  
Author(s):  
Pedro Eulogio Cisterna Osorio ◽  
Antonio Gutiérrez Lavin ◽  
Herminio Sastre-Andres

The aim of this work is to evaluate the incidence rate of the previous acclimatization of biomass and the presence of any other easily biodegradable substrates, such as sucrose. This experiment will be undertaken with sunflower oil biodegradation in a batch reactor with suspended biomass. It used a biomass concentration of 5000 mg/l in batch reactors, and in every condition the elimination of oil by means of biodegradation was achieved with levels ranging from 10 to 90 % It was noticed that sludge acclimation substantially improves biodegradation efficiency by increasing the average biodegradation from a value of 30% to 80%. When adding sucrose to an acclimatized biomass stage, biodegradation sunflower oil is reduced, from an average value of 80% to 60%.


Author(s):  
Hongwei Sun ◽  
Chenjian Cai ◽  
Jixue Chen ◽  
Chunyu Liu ◽  
Guangjie Wang ◽  
...  

Abstract In order to investigate the effect of temperatures and operating modes on extracellular polymeric substances (EPS) contents, three sequencing batch reactors (SBRs) were operated at temperatures of 15, 25, and 35 °C (R15 °C, R25 °C, and R35 °C, respectively), with two SBRs operated under alternating anoxic/oxic conditions (RA/O and RO/A, respectively). Results showed that higher contents of tightly bound EPS (TB-EPS) and total EPS appeared in R15 °C, while loosely bound EPS (LB-EPS) dominated in R35 °C. In all three kinds of EPS (LB-EPS, TB-EPS and total EPS) assessed, protein was the main component in R15 °C and R25 °C, while polysaccharides dominated in R35 °C. Moreover, compared with RO/A, RA/O was favorable for the production of the three kinds of EPS. Furthermore, three kinds of EPS and their components were augmented during the nitrification process, while they declined during the denitrification process under all conditions except for R35 °C.


2006 ◽  
Vol 54 (2) ◽  
pp. 199-206 ◽  
Author(s):  
A. Benítez ◽  
A. Ferrari ◽  
S. Gutierrez ◽  
R. Canetti ◽  
A. Cabezas ◽  
...  

Wastewater from dairy industries, characterized by its high COD content and relative high COD/TKN ratio, requires post-treatment after anaerobic treatment to complete the removal of organic matter and nutrients. Due to its simplicity, robustness and low maintenance costs, sequencing batch reactors (SBR) result in an attractive system, especially in case of small dairy industries in order to comply with the emission standards. The goal of this work was to determine the operational parameters, optimize the performance, and study the stability of the microbial population of a SBR system for the post-treatment of an anaerobic pond effluent. High and stable removal of COD and TKN was achieved in the reactor, which can easily be set up in dairy industries. An active nitrifying population was selected during reactor operation and maintained relatively stable, while the heterotrophic (total and denitrifying) communities were more unstable and susceptible to changes in the operating conditions.


Sign in / Sign up

Export Citation Format

Share Document