Polymer conditioning of alum sludge and discrepancies between estimates of the optimum dosage

2002 ◽  
Vol 46 (10) ◽  
pp. 115-121 ◽  
Author(s):  
Y.Q. Zhao ◽  
E.N. Papavasilopoulos ◽  
D.H. Bache ◽  
P.A. Mackinnon

The paper outlines the effects of polymer conditioning on alum sludge properties, such as floc size, density, fractal dimension (DF) and rheological properties. Experimental results demonstrate that polymer conditioning of alum sludge leads to: larger floc size with a plateau reached in higher doses; higher densities associated with higher doses; increased degree of compactness; and an initial decrease followed by an increase of supernatant viscosity with continued increase in polymer dose. The secondary focus of this paper dwells on a comparison of the estimates of optimum dose using different criteria that emanate from established dewatering tests such as CST, SRF, liquid phase viscosity and modified SRF as well as a simple settlement test in terms of CML30. Alum sludge was derived from a water works treating coloured, low-turbidity raw waters.

Author(s):  
Timur Aydemir ◽  
N. A. Semenov ◽  
G. I. Dzhardimalieva ◽  
A.N. Danilin ◽  
Mauro Zarrelli ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 2381-2385
Author(s):  
Xue Mei Zhang ◽  
Feng Xing Niu

We have successfully prepared a novel passivation Ni/HY catalyst by the technologies of macerate-precipitatio.The catalysts are comprised of two contents: HY as carrier, Ni as active component,and we put it into the process of preparating aromatic amines.The nature of the catalysts was discussed based on the characterization results of BET , IR , SEM , XRD , TEM ,TPD , XPS and TPR . The catalytic hydrogenation technology for 2,4-dinitrobenzene in liquid phase can be an attractive and elegant routine for production of 2,4-tolylenediamine. The catalytic activity is evaluated at 2.2 MPa, 90 °C, 750r/min, solvent with reaction materials mass ratio of 60, catalyst with reaction materials mass ratio of 0.1. In the catalytic test, The experimental results over the catalyst showed that 2,4-dinitrobenzene and 2,4-tolylenediamine conversion and selective of 99.88% and 99.16% were obtained respectively.It is found that the catalyst is highly dispersion, stable, and reusable. No obvious deactivation of the catalyst was observed after repeated using twelve times.


2011 ◽  
Vol 66-68 ◽  
pp. 1163-1166
Author(s):  
Mao Jun Chen ◽  
Zhong Jin Ni ◽  
Liang Fang

In automated manufacturing systems, one of the most important issues is the detection of tool wear during the machining process. The Hausdorff-Besicovitch (HB) dimension is used to analyze the feature of the surface texture of work-piece in this paper. The value of the fractal dimension of the work-piece surface texture tends to decrease with the machining process, due to the texture becoming more complex and irregular, and the tool wear is also becoming more and more serious. That can describe the inherent relationship between work-piece surface texture and tool wear. The experimental results demonstrate the probability of using the fractal dimension of work-piece surface texture to monitor the tool wear condition.


Some of the problems associated with the transportation of crude oils are due to the presence of heavy compounds as asphaltene molecules. This work developed a stochastic model that predicts the fractal dimension of the asphaltene aggregates. It was found that the maximum value of the fractal dimension is 1.71, which corresponds to the reported experimental results. The model can be applied as a universal growing behavior for the analysis of surface roughness when solids deposition is observed in the production systems involving crude oils


Author(s):  
Florina A. SILAGHI ◽  
Alessandro GIUNCHI ◽  
Angelo FABBRI ◽  
Luigi RAGNI

The control of ice cream powder mixture production is carried out evaluating the ice cream liquid phase. The present study was conduced on ice cream and unfrozen liquid phase in order to indirectly evaluate the rheological properties by measuring the powder mixture. The calibration set was formed by samples with different percentage of thickeners, maintaining constant the concentration of the other remaining compounds. After the NIR acquisitions the powders were mixed with warm milk, blended and than settled in order to obtain the unfrozen liquid phase needed for the rheological measurements. For each recipe three batches were prepared. The flow curves were evaluated by using the Ostwald de Waele’s equation and the goodness of fit was evaluated by the R2, which was above 0.95. Predictive models of rheological parameters were set up by means of PLS regressions in order to predict the consistency coefficient (K) and the flow behavior index (n) from spectral acquisitions. High correlation of calibration was found for both parameters and NIR spectra obtaining R2 of 0.884 for K and 0.874 for n. The good prediction of the models encourages applying them to reduce significantly the time of the powder mixing control during production.


2005 ◽  
Vol 70 (12) ◽  
pp. 1533-1544 ◽  
Author(s):  
Ivica Stamenkovic ◽  
Olivera Stamenkovic ◽  
Ivana Bankovic-Ilic ◽  
Miodrag Lazic ◽  
Vlada Veljkovic ◽  
...  

Gas holdup was investigated in a gas-liquid and gas-liquid-solid reciprocating plate column (RPC) under various operation conditions. Aqueous carboxymethyl cellulose (sodium salt, CMC) solutions were used as the liquid phase, the solid phase was spheres placed into interplate spaces, and the gas phase was air. The gas holdup in the RPC was influenced by: the vibration intensity, i.e., the power consumption, the superficial gas velocity, the solids content and the rheological properties of the liquid phase. The gas holdup increased with increasing vibration intensity and superficial gas velocity in both the two- and three-phase system. With increasing concentration of the CMC PP 50 solution (Newtonian fluid), the gas holdup decreased, because the coalescence of the bubbles was favored by the higher liquid viscosity. In the case of the CMC PP 200 solutions (non-Newtonian liquids), the gas holdup depends on the combined influence of the rheological properties of the liquid phase, the vibration intensity and the superficial gas velocity. The gas holdup in the three-phase systems was greater than that in the two-phase ones under the same operating conditions. Increasing the solids content has little influence on the gas holdup. The gas holdup was correlated with the power consumption (either the time-averaged or total power consumption) and the superficial gas velocity.


1982 ◽  
Vol 22 (04) ◽  
pp. 558-562 ◽  
Author(s):  
P.C. Rawat ◽  
S.L. Agarwal

Abstract An important parameter required for computing heat loss through buried submarine pipelines transporting crude oil is the thermal conductivity of soils. This paper describes an apparatus designed for determination of the thermal conductivity of soils at the desired moisture/ density condition in the laboratory under steady-state conditions. Experimental results on the three soils studied show that thermal conductivity increases as dry density increases at a constant moisture content and that it increases as water content increases at constant dry density. These results confirm the trends isolated earlier by Kersten. The experimental results are compared with the available empirical relationships. Kersten's relation is observed to predict the thermal conductivity of these soils reasonably. The predictions from Makowski and Mochlinski's relation (quoted by Szilas) are not good but improve if the sum of silt and clay fractions is treated as a clay fraction in the computation. Introduction Submarine pipelines are used extensively for transporting crude oil from offshore to other pipelines offshore or onshore. These pipelines usually are steel pipes covered with a coating of concrete. They often are buried some depth below the mudline. The rheological properties of different crude oils vary, and their viscosities increase with a decrease in temperature. Below some temperature, the liquid oil tends to gel. Therefore, for efficient transportation, the crude must be at a relatively high temperature so that it has a low viscosity. The temperature of the soil/water system surrounding a submarine pipeline is usually lower than that of oil. This temperature difference induces heat to flow from the oil to the environment, and the temperature of the oil decreases as it travels along the length of the pipeline. One must ensure that this temperature reduction does not exceed desirable limits dictated by the rheological properties of oil and by the imperatives of efficient economic properties of oil and by the imperatives of efficient economic transportation. Thus the analytical problem is to predict the temperature of crude in the pipeline some distance away from the input station. To do so, knowledge of the overall heat transfer coefficient for the pipeline is required, for which, in turn, it is necessary to know the thermal conductivities of the oil, the pipeline materials and its coating, and the soil. This paper presents thermal conductivities of soils determined in the laboratory under steady-state conditions and also presents a comparison of the test results of three soils with values determined from existing empirical relationships. Literature Review Heat moves spontaneously from higher to lower temperatures. In a completely dry porous body, transmission of heat can take place not only by conduction through the solid framework of the body and the air in the pores but also by convection and radiation between the walls of a pore and by macro- and microdistillation. In soils, however, it can be ascribed essentially to conduction, a molecular phenomenon that can be expressed in terms of experimentally determined coefficients of conductivity or resistivity, although these actually may include microdistillation and other mechanisms. SPEJ p. 558


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 504 ◽  
Author(s):  
Yi Yu ◽  
Yuxue Yue ◽  
Bolin Wang ◽  
Haihua He ◽  
Zhong-Ting Hu ◽  
...  

We studied the acetylene hydrochlorination in gas–liquid phase reactions using ionic liquids (IL) as the reaction media and CuCl2 as the catalyst. The Cu-IL catalyst showed strong synergy between the IL and the Cu(II) active catalytic species. For [PrMIm]Cl, the Cu-IL catalyst exhibited significant enhancement of the catalytic activity in comparison with the CuCl2 catalyst supported on activated carbon and the IL alone as the catalyst. We have also performed DFT calculations of the reaction process, which provides a good explanation of our experimental results and for the synergetic effect. Our result suggests that ILs may be used to improve the activity of other metallic catalysts for the hydrochlorination reaction of acetylene.


Author(s):  
Abdalsalam Ihmoudah ◽  
Mohamed M. Awad ◽  
Mohammad Azizur Rahman ◽  
Stephen D. Butt

Abstract Two-phase flow of gas/yield Pseudoplastic fluids can be found in different industrial applications like the chemical processes, oil industry, and petroleum transport in pipelines. In this study, experimental and numerical investigation of the influence of Rheological properties of non-Newtonians fluids in two-phase flow (gas/yield Pseudoplastic fluids) on slug characteristics in an upward vertical flow were performed. Different concentrations of Xanthan gum solutions (0.05%, 0.10%, and 0.15%, by w/w), which are referred to as non-Newtonian, yield Pseudoplastic behavior used as the working liquids and air as a gas. The experiments were conducted in an open-loop re-circulating system has a total length of 65 m to ensure phase mixing, and authorize flow regime patterns to develop. The vertical pipe has a diameter of 76.3 mm. API-compliant 8-speed rotational viscometer model 800 was used to measure the rheological properties of non-Newtonian fluids. Flow visualization and recording videos were achieved by A high-speed camera to a comparison between behavior of Newtonian and non-Newtonian fluids in the two-phase model. Pressure transducers used to measure high-response pressure. Computational fluid dynamics software (ANSYS fluent 2019 R3) was used for the numerical investigation. The volume of fluid (VOF) model has been chosen for tracking immiscible fluids. CFD simulation results compared to the experimental data. The slug behavior and shape were noticed to be affected by changing the rheological properties of the liquid phase. with increasing XG concentration at the same operations conditions, we found that non-uniform and random distribution of small bubbles due to the effective viscous force of a liquid phase.


Sign in / Sign up

Export Citation Format

Share Document