scholarly journals Estimation of Rheological Properties of Ice Cream Unfrozen Liquid Phase by FT-NIR Spectroscopy

Author(s):  
Florina A. SILAGHI ◽  
Alessandro GIUNCHI ◽  
Angelo FABBRI ◽  
Luigi RAGNI

The control of ice cream powder mixture production is carried out evaluating the ice cream liquid phase. The present study was conduced on ice cream and unfrozen liquid phase in order to indirectly evaluate the rheological properties by measuring the powder mixture. The calibration set was formed by samples with different percentage of thickeners, maintaining constant the concentration of the other remaining compounds. After the NIR acquisitions the powders were mixed with warm milk, blended and than settled in order to obtain the unfrozen liquid phase needed for the rheological measurements. For each recipe three batches were prepared. The flow curves were evaluated by using the Ostwald de Waele’s equation and the goodness of fit was evaluated by the R2, which was above 0.95. Predictive models of rheological parameters were set up by means of PLS regressions in order to predict the consistency coefficient (K) and the flow behavior index (n) from spectral acquisitions. High correlation of calibration was found for both parameters and NIR spectra obtaining R2 of 0.884 for K and 0.874 for n. The good prediction of the models encourages applying them to reduce significantly the time of the powder mixing control during production.

2012 ◽  
Vol 430-432 ◽  
pp. 301-305
Author(s):  
Li Wen Tan ◽  
Dong Mei Xu ◽  
Quan Ji ◽  
Bing Bing Wang ◽  
Yan Zhi Xia

Rheological properties of blend spinning solution of sodium alginate and TiO2 nanoparticles (SA/nano-TiO2) were investigated. The rheological parameters, structural viscosity index (Δη) and flow activation energy (Eη) of spinning solutions were calculated. The results reported that the blend spinning solutions were non-newtonian fluids. The apparent viscosity, consistency index (k) and Eη increased with increasing nano-TiO2 content in SA spinning solution, but the degradation degree of apparent viscosity decreased, flow behavior index (n) only slightly decreased and the Δη had no significantly change. The apparent viscosity (ηa) of spinning solutions could be regulated by changing temperature under 50oC. Blend spinning solution had good stability and practical applicability.


2020 ◽  
Vol 16 (5) ◽  
pp. 666-674
Author(s):  
Amir M. Mortazavian ◽  
Najme Kheynoor ◽  
Zahra Pilevar ◽  
Zhaleh Sheidaei ◽  
Samira Beikzadeh ◽  
...  

The rheological analysis is important analytical tools used to obtain fundamental information about food structure. For instance, the properties of flow of liquid and semi-solidity are characterized by the consistency and flow behavior experiments as two important rheological parameters. The rheological parameters of foods are applied in quality control of the products and processing of food products such as energy input calculations, process design, equipment selection, and especially for deciding on heat exchangers and pumps. Steady flow behavior, oscillatory, and penetration tests are among commonly used parameters for evaluating rheological characteristics of ice cream. The purpose of this paper is to provide an overview of recent experiments and methods for measuring the rheological and texture properties of ice cream.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Kameda ◽  
Hamada Yohei

AbstractSubmarine debris flows are mass movement processes on the seafloor, and are geohazards for seafloor infrastructure such as pipelines, communication cables, and submarine structures. Understanding the generation and run-out behavior of submarine debris flows is thus critical for assessing the risk of such geohazards. The rheological properties of seafloor sediments are governed by factors including sediment composition, grain size, water content, and physico-chemical conditions. In addition, extracellular polymeric substances (EPS) generated by microorganisms can affect rheological properties in natural systems. Here we show that a small quantity of EPS (~ 0.1 wt%) can potentially increase slope stability and decrease the mobility of submarine debris flows by increasing the internal cohesion of seafloor sediment. Our experiments demonstrated that the flow behavior of sediment suspensions mixed with an analogue material of EPS (xanthan gum) can be described by a Herschel–Bulkley model, with the rheological parameters being modified progressively, but not monotonously, with increasing EPS content. Numerical modeling of debris flows demonstrated that the run-out distance markedly decreases if even 0.1 wt% of EPS is added. The addition of EPS can also enhance the resistivity of sediment to fluidization triggered by cyclic loading, by means of formation of an EPS network that binds sediment particles. These findings suggest that the presence of EPS in natural environments reduces the likelihood of submarine geohazards.


2019 ◽  
Vol 33 (05) ◽  
pp. 1950014 ◽  
Author(s):  
A. Bindu Madhavi ◽  
S. Sreehari Sastry

Rheological properties of Cholesteryl n-valerate, Cholesteryl decanoate and Cholesteryl myristate which are esters of cholesterol have been studied. Phase transition temperatures and rheological parameters such as viscosity, elastic modulus G[Formula: see text], loss modulus G[Formula: see text] as functions of temperature, shear rate and time are investigated. In frequency sweep test, a higher transition crossover region has occurred for Cholesteryl myristate, whereas for Cholesteryl n-valerate a frequency-independent plateau prevailed for both the moduli. The occurrence of blue phase in Cholesteryl decanoate during temperature sweep measurements is an indication for the rheological support. The results for steady state have informed that cholesteric esters are having non-Newtonian flow behavior in their respective cholesteric phases. The power-law model has explained well the shear rate dependence of shear stress. A few practical applications of these esters as lubricant additives are discussed, too.


2008 ◽  
Vol 18 (3) ◽  
pp. 34482-1-34482-11 ◽  
Author(s):  
Vassilios C. Kelessidis ◽  
Roberto Maglione

AbstractA methodology is presented to invert the flow equation of a Herschel-Bulkley fluid in Couette concentric cylinder geometry, thus enabling simultaneous computation of the true shear rates, γ̇HB, and of the three Herschel-Bulkley rheological parameters. The errors made when these rheological parameters are computed using Newtonian shear rates, γ̇N, as it is normal practice by research and industry personnel, can then be estimated. Quantification of these errors has been performed using narrow gap viscometer data from literature, with most of them taken with oil-field rheometers. The results indicate that significant differences exist between the yield stress and the flow behavior index computed using γ̇HB versus the parameters obtained using γ̇N and this is an outcome of the higher γ̇HB values. Predicted true shear rates and rheological parameters are in very good agreement with results reported by other investigators, who have followed different approaches to invert the flow equation, both for yield-pseudoplastic and power-law fluids.


Author(s):  
ROSANE DA SILVA RODRIGUES ◽  
ÂNGELA MARIA GOZZO ◽  
ROBERTO HERMÍNIO MORETTI

Estudou-se o comportamento reológico de extratos elaborados com grãos, farinha integral e isolado protéico de soja. Extratos com 3% de proteína foram obtidos de grãos de soja (em equipamento conhecido como “vaca mecânica”), de farinha integral e de isolado protéico (por dissolução em água) e pasteurizados a 74±2°C por 15 seg. Os parâmetros reológicos estudados foram o coeficiente de consistência, o índice de comportamento do fluxo e a viscosidade aparente. Foram determinados, também, sólidos totais, proteínas, lipídios, cinzas, fibra bruta, carboidratos e índice de sedimentação (AOAC, 1995). Verificou-se que a viscosidade aparente, a 4 e 25°C, do extrato obtido de grãos de soja (fluido nãonewtoniano com comportamento pseudoplástico) foi maior que a do extrato da farinha (fluido não-newtoniano com comportamento pseudoplástico a 4°C e dilatante a 25°C) e do isolado (fluido newtoniano). O maior índice de sedimentação constatado no extrato de farinha integral e o baixo teor de sólidos solúveis no isolado protéico foram determinantes, entre outros fatores, no comportamento reológico verificado. AbstractRHEOLOGICAL BEHAVIOR OF SOYMILK, WHOLE SOY FLOUR AND SOY ISOLATED PROTEIN The rheological properties of extracts elaborated with soybeans, whole soy flour and isolated protein were studied. Extracts with 3% of protein were obtained from soybeans (in a equipment called “mechanic cow”), whole soy flour and isolated soy protein (by dissolution in water) and pasteurized at 74±2°C for 15 seg. The rheological parameters studied were the flow behavior index, consistency coefficient and apparent viscosity. Total solid, proteins, lipids, ashes, brute fiber, carbohydrates and sedimentation index (AOAC, 1995) was also determined. The apparent viscosity, at 4 and 25°C, of the extract obtained from soybeans (non-newtonian fluid with pseudoplastic behavior), was greater than the one of whole soy flour extract (nonnewtonian fluid with pseudoplastic behavior at 4°C and dilatant at 25°C) and of the isolated soy protein extract (Newtonian fluid). The highest sedimentation index verified in the whole soy flour extract and the low content of soluble solids in the extract of isolated soy protein defined, among others factors, the rheological behavior verified.


1989 ◽  
Vol 111 (3) ◽  
pp. 337-341 ◽  
Author(s):  
K. G. A. Porges ◽  
S. A. Cox ◽  
C. Herzenberg ◽  
C. Kampschoer

Pulsed Neutron Activation (PNA) is a means of noninvasive flow velocity measurement based on tagging the flowing medium with a short-lived radioactivity. Previous work with salt or dye-tagging showed poor accuracy in turbulent and failed in laminar flow when conventional data processing was used. However, use of a data acquisition and processing scheme that is based on tag dispersion modelling can produce absolute values over a wide range of flow speeds and regimes with high accuracy. For non-Newtonian/laminar flow, rheological information can also be obtained. The inherently non-intrusive nature of PNA tagging makes this scheme available for slurry measurements. The performance of PNA in slurry flow at up to 60 percent solid content was compared to full-flow diversion and weighing. Errors ranged from less than 0.2 percent at high Reynolds’ numbers to about 2 percent for paste flow. Rheological parameters (yield shear stress or flow behavior index) could be determined with an accuracy that compared to that of a spindle viscometer with grab-samples. The PNA scheme thus offers a unique means of studying slurry flow in a dedicated laboratory facility, or of providing calibration for other flowmeters in an industrial plant through temporary installation by a team of expert consultants.


Author(s):  
Charles Windson Isidoro Haminiuk ◽  
Maria-Rita Sierakowski ◽  
Giselle Maria Maciel ◽  
José Raniere Mazile Bezerra Vidal ◽  
Ivanise Guilherme Branco ◽  
...  

Rheological parameters of Butia pulp were determined at different temperatures using a concentric cylinder Haake Rotovisco rheometer, model RV-20, with measurement system ZA-30. Butia pulp was found to exhibit non-Newtonian, pseudoplastic behavior at all temperatures and the rheological parameters were adequately described by the Herschel-Bulkley model. Yield stress, flow behavior index, and consistency coefficient were significantly affected by temperature. The yield stress decreased exponentially with process temperature and ranged between 36.60 and 21.70 Pa. Apparent viscosity calculated through the Herschel-Bulkley model decreased with an increase in temperature. The Arrhenius model gave a good description of temperature effect on apparent viscosity of the pulp.


2013 ◽  
Vol 2 (2) ◽  
pp. 167 ◽  
Author(s):  
Zhen Ma ◽  
Joyce I. Boye

Significant opportunities exist for using pulses in the development of health promoting foods as consumers increasingly look for functional foods with disease prevention qualities. Pulse ingredients could be considered for use in the development of novel, value-added products such as salad dressing. In this study, the rheological properties, color, physical stability, and microstructure of model salad dressing emulsions supplemented with various types of pulse flours (red lentil, green lentil, desi chickpea, kabuli chickpea and yellow pea) were evaluated. Supplementation with pulse flours significantly increased (<em>P</em> &lt; 0.05) the consistency coefficient (<em>m</em>) and decreased (<em>P </em>&lt; 0.05) the flow behavior index (<em>n</em>) of the control dressing in accordance with the power law modelduring steady state flow tests. The pulse-supplemented dressings also showed increased recoverable strain (i.e., increased <em>Q(t)</em>% values) compared with the control. The observed rheological results were supported by scanning electron microscope (SEM) observations, where a more compact and uniform network was observed for supplemented dressings in comparison with the control sample. Addition of pulse flour increased the physical stability of the salad dressing emulsions and also modified color by increasing yellowness and redness hues depending on the type of flour used. This study, thus, demonstrated that pulse flours hold promise as ingredients that could be used in salad dressing formulations.


Author(s):  
Pedro Esteves Duarte Augusto ◽  
Marcelo Cristianini ◽  
Albert Ibarz

The rheological characterization of food is important for efficient product and process design. Although its importance in semi-arid regions, there are only a few studies regarding the rheological properties of cactus pear products in the literature. The present work has used the Mitschka-Briggs-Steffe method for evaluation of the rheological behavior of cactus pear concentrated pulps. The pulps have shown pseudoplastic behavior. The flow behavior index (n) shows a constant value in the evaluated conditions, and its average value was considered in the evaluated temperature and concentration range. The consistency index (k) has shown dependency of concentration and temperature, being well modeled by a modified Arrhenius equation. Thus, the rheological parameters of cactus pear concentrated pulps can be obtained using a single equation, related with temperature, concentration and shear rate. The obtained data are potentially useful for future studies on product development, food properties and process design.


Sign in / Sign up

Export Citation Format

Share Document