Nitrogen removal function of recycling irrigation system

2006 ◽  
Vol 53 (2) ◽  
pp. 101-109 ◽  
Author(s):  
T. Hitomi ◽  
I. Yoshinaga ◽  
Y.W. Feng ◽  
E. Shiratani

The purpose of this study was to clarify the nitrogen (N) purification capacity of a paddy field in a recycling irrigation system. Irrigation water was sampled at 12-h intervals during the irrigation period from April to September 2003. In addition, ponded water in a paddy field was collected at three points (inlet, centre and outlet). Total amounts of N were 30.7 kg ha−1 in inflow and 27.8 kg ha−1 in outflow. Thus, the net outflow load was −2.9 kg ha−1. The N removal rate constant when N removal is expressed as a 1st-order kinetic was 0.017–0.024 m d−1. This value is close to values of wetlands and paddy fields in the literature. We found a good correlation between recycling ratio and N removal effect. These results indicate that the recycling irrigation system accumulates N in the irrigation/drainage system, and thus the paddy field does a good job of water purification by removing N.

2005 ◽  
Vol 51 (3-4) ◽  
pp. 151-157 ◽  
Author(s):  
Y.W. Feng ◽  
I. Yoshinaga ◽  
E. Shiratani ◽  
T. Hitomi ◽  
H. Hasebe

We studied nutrient balance in a paddy field that had a recycling irrigation system and evaluated the effect of the irrigation system on nutrient balance during the irrigation period, from April to August 2002. Chemical fertilizer was the main input of phosphorus; the soil absorbed about 56% of it. The amount of nitrogen supplied by the irrigation system was higher than in a representative paddy field, and the amount of nitrogen fertilizer used was decreased because the irrigation water was partly reused. About 20% of applied nitrogen was lost by denitrification. The net outflows of phosphorus and nitrogen were −0.37 and −3.98 kg ha−1, respectively. These results indicate that our study paddy field performed well in removing phosphorus and nitrogen compounds from runoff water. A recycling irrigation system can be considered an effective way of reducing the amounts of water and fertilizer used and reducing the outflow nutrients.


2004 ◽  
Vol 49 (3) ◽  
pp. 55-62 ◽  
Author(s):  
E. Shiratani ◽  
I. Yoshinaga ◽  
Y. Feng ◽  
H. Hasebe

We reviewed rates of nitrogen (N) removal in paddy fields and wetlands. Then we developed a numerical model to simulate N flow in an agricultural paddy field area and analyzed scenarios for recycling the agricultural run-off, including field drainage, from an agricultural area with an irrigation/drainage system. In it, we considered N removal in paddy fields, a regulating reservoir, and canals. The review showed that the rate constant for N removal in paddy fields and wetlands was 0.025 m/d under natural conditions and 0.01 m/d under dark conditions. The scenario analysis of recycling paddy field run-off within the model area indicated that a large amount of the effluent load occurred during the transplanting period and that recycling could reduce the effluent N load. The effluent N load would be equal to the inflowing N load at a 48% recycling rate. In this scenario, paddy fields accounted for most of the reduction in the effluent N load, and the mean removal rates per unit area of paddy field and regulating reservoir were 53.6 g ha-1d-1 and 222.6 g ha-1d-1, respectively.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1051 ◽  
Author(s):  
Zizhen Zhou ◽  
Tinglin Huang ◽  
Weijin Gong ◽  
Yang Li ◽  
Yue Liu ◽  
...  

A field scale experiment was performed to explore the nitrogen removal performance of the water and surface sediment in a deep canyon-shaped drinking water reservoir by operating WLAs (water-lifting aerators). Nitrogen removal performance was achieved by increasing the densities and N-removal genes (nirK and nirS) of indigenous aerobic denitrifiers. After the operation of WLAs, the total nitrogen removal rate reached 29.1 ± 0.8% in the enhanced area. Ammonia and nitrate concentrations were reduced by 72.5 ± 2.5% and 40.5 ± 2.1%, respectively. No nitrite accumulation was observed. Biolog results showed improvement of carbon metabolism and carbon source utilization of microbes in the enhanced area. Miseq high-throughput sequencing indicated that the denitrifying bacteria percentage was also higher in the enhanced area than that in the control area. Microbial communities had changed between the enhanced and control areas. Thus, nitrogen removal through enhanced indigenous aerobic denitrifiers by the operation of WLAs was feasible and successful at the field scale.


2018 ◽  
Vol 78 (9) ◽  
pp. 1843-1851 ◽  
Author(s):  
İ. Çelen-Erdem ◽  
E. S. Kurt ◽  
B. Bozçelik ◽  
B. Çallı

Abstract The sludge digester effluent taken from a full scale municipal wastewater treatment plant (WWTP) in Istanbul, Turkey, was successfully deammonified using a laboratory scale two-stage partial nitritation (PN)/Anammox (A) process and a maximum nitrogen removal rate of 1.02 kg N/m3/d was achieved. In the PN reactor, 56.8 ± 4% of the influent NH4-N was oxidized to NO2-N and the effluent nitrate concentration was kept below 1 mg/L with 0.5–0.7 mg/L of dissolved oxygen and pH of 7.12 ± 12 at 24 ± 4°C. The effluent of the PN reactor was fed to an upflow packed bed Anammox reactor where high removal efficiency was achieved with NO2-N:NH4-N and NO3-N:NH4-N ratios of 1.32 ± 0.19:1 and 0.22 ± 0.10:1, respectively. The results show that NH4-N removal efficiency up to 98.7 ± 2.4% and total nitrogen removal of 87.7 ± 6.5% were achieved.


2013 ◽  
Vol 67 (12) ◽  
pp. 2677-2684 ◽  
Author(s):  
M. Christensson ◽  
S. Ekström ◽  
A. Andersson Chan ◽  
E. Le Vaillant ◽  
R. Lemaire

ANITA™ Mox is a new one-stage deammonification Moving-Bed Biofilm Reactor (MBBR) developed for partial nitrification to nitrite and autotrophic N-removal from N-rich effluents. This deammonification process offers many advantages such as dramatically reduced oxygen requirements, no chemical oxygen demand requirement, lower sludge production, no pre-treatment or requirement of chemicals and thereby being an energy and cost efficient nitrogen removal process. An innovative seeding strategy, the ‘BioFarm concept’, has been developed in order to decrease the start-up time of new ANITA Mox installations. New ANITA Mox installations are started with typically 3–15% of the added carriers being from the ‘BioFarm’, with already established anammox biofilm, the rest being new carriers. The first ANITA Mox plant, started up in 2010 at Sjölunda wastewater treatment plant (WWTP) in Malmö, Sweden, proved this seeding concept, reaching an ammonium removal rate of 1.2 kgN/m3 d and approximately 90% ammonia removal within 4 months from start-up. This first ANITA Mox plant is also the BioFarm used for forthcoming installations. Typical features of this first installation were low energy consumption, 1.5 kW/NH4-N-removed, low N2O emissions, <1% of the reduced nitrogen and a very stable and robust process towards variations in loads and process conditions. The second ANITA Mox plant, started up at Sundets WWTP in Växjö, Sweden, reached full capacity with more than 90% ammonia removal within 2 months from start-up. By applying a nitrogen loading strategy to the reactor that matches the capacity of the seeding carriers, more than 80% nitrogen removal could be obtained throughout the start-up period.


2011 ◽  
Vol 64 (3) ◽  
pp. 587-594 ◽  
Author(s):  
Sergio S. Domingos ◽  
Stewart Dallas ◽  
Lucy Skillman ◽  
Stephanie Felstead ◽  
Goen Ho

Nitrogen removal performance and the ammonia-oxidising bacterial (AOB) community were assessed in the batch loaded 1.3 ha saturated surface vertical flow wetland at CSBP Ltd, a fertiliser and chemical manufacturer located in Kwinana, Western Australia. From September 2008 to October 2009 water quality was monitored and sediment samples collected for bacterial analyses. During the period of study the wetland received an average inflow of 1,109 m3/day with NH3-N = 40 mg/L and NO3-N = 23 mg/L. Effluent NH3-N and NO3-N were on average 31 and 25 mg/L, respectively. The overall NH3-N removal rate for the period was 1.2 g/m2/day indicating the nitrifying capacity of the wetland. The structure of the AOB community was analysed using group specific primers for the ammonia monooxygenase gene (amoA) by terminal restriction fragment length polymorphism and by clone libraries to identify key members. The majority of sequences obtained were most similar to Nitrosomonas sp. while Nitrosospira sp. was less frequent. Another two vertical flow wetlands, 0.8 ha each, were commissioned at CSBP in July 2009, since then the wetland in this study has received nitrified effluent from these two new cells.


2012 ◽  
Vol 518-523 ◽  
pp. 2391-2398
Author(s):  
Yan He ◽  
Gong Ming Zhou ◽  
Min Sheng Huang ◽  
Min Tong

Three kinds of seeding sludge, i.e. conventional activated sludge, anaerobic granular sludge and the nitrifying activated sludge from the nitritation reactor treating aged leachates were evaluated in batch mode to screen the optimized inoculum for the rapid start-up of ANAMMOX reactor. The feasibility of the ANAMMOX process for the treatment of aged leachates was also investigated in a modified upflow anaerobic sludge blanket (UASB, 0.05m3). The batch experiments revealed that the nitrifying activated sludge from the nitritation reactor could respectively achieve the NRR (nitrogen removal rate) of 0.0365 kg N/(m3.d) and the ARR (ammonium removal rate) of 0.013 kg N/(m3.d) on day 12, which were greatly higher than those of the other two tested sludge samples. The mixture of the aforementioned nitrifying activated sludge and anaerobic granular sludge was established as an effective inoculum for the prompt start-up of ANAMMOX reactor. The maximum total nitrogen removal rate of 0.826 kg N/(m3.d) could be obtained for the treatment of “old” leachates under NLR (nitrogen loading rate) of 1.028 kg N/(m3.d). It is concluded that the N-removal performance of ANAMMOX process is still to be improved for actual engineering application to aged landfill leachates.


Author(s):  
A. K. Maharjan ◽  
K. Mori ◽  
K. Nishida ◽  
T. Toyama

Abstract A novel dropping nitrification–cotton-based denitrification reactor was developed for total nitrogen (N) removal from ammonium (NH4+)-contaminated groundwater. The nitrogen removal ability of the reactor was evaluated for 91 days. A 1 m-long dropping nitrification unit was fed with synthetic groundwater containing 30 mg-NH4+-N/L at a flow rate of 2.16 L/d. The outlet of the dropping nitrification unit was connected to the cotton-based denitrification unit. The NH4+ present in the groundwater was completely oxidized (>90% nitrification efficiency) by nitrifying bacteria to nitrite (NO2–) and nitrate (NO3–) in the dropping nitrification unit. Subsequently, the generated NO2– and NO3– were denitrified (96%–98% denitrification efficiency) by denitrifying bacteria in the cotton-based denitrification unit under anoxic conditions. Organic carbons released from the cotton presumably acted as electron donors for heterotrophic denitrification. Nitrifying and denitrifying bacteria were colonized in higher abundance in the dropping nitrification and cotton-based denitrification units, respectively. The total N removal rate and efficiency of the dropping nitrification–cotton-based denitrification reactor for 91 days were 58.1–66.9 mg-N/d and 96%–98%, respectively. Therefore, the dropping nitrification–cotton-based denitrification reactor will be an efficient, sustainable, and promising option for total N removal from NH4+-contaminated groundwater.


Author(s):  
Krishnanand Maillacheruvu ◽  
Derek Hartmann

Nitrogen and phosphorus are two major pollutants that lead to eutrophication, adversely impact ecosystems, and lead to degradation of water quality, which impacts human health and sustainability. Pollution from point sources like wastewater and industry discharge is easier to control than non-point source pollution due to agricultural runoff and related activities. The USEPA is considering more strict standards for nitrogen and phosphorus discharge from point sources. The objective of this study was to use an appropriate low-cost wastewater technology to demonstrate removal of nitrogen from wastewater discharge using rotating biological contactors (RBCs) using different C:N ratios. The first-order nitrogen removal rate constant was found to be about 3.88 day-1 in experimental reactor systems, using RBC media from a local wastewater treatment plant (Greater Peoria Sanitary District). Phase I experiments, at C:N ratio of 2:1, with nitrogen removal rates of 60% in a single flow-through system. Phase II experiments for the limited carbon availability condition showed that the removal rate constant reduced by 30% and N-removal efficiency dropped to around 48%. Modeling showed that even under these conditions, multiple bioreactors operated in series could help achieve design treatment goals. The system achieved stability within a week of operation. Economics and sustainability issues are analyzed to determine if the process developed in this research is scalable to pilot-and full-scale conditions.


2006 ◽  
Vol 53 (2) ◽  
pp. 147-153 ◽  
Author(s):  
Y.W. Feng ◽  
E. Shiratani ◽  
I. Yoshinaga ◽  
T. Hitomi

We estimated the reduction in nitrogen outflow load from a paddy field that had a recycling irrigation facility and, by using a replacement cost method, evaluated the economic effect of nitrogen removal by the paddy field during the irrigation period in the Yoshinuma region of Tsukuba City, Japan. The recycling ratio of outflow water (proportion of outflow reused) was 13.5%. The nitrogen (N) outflow load was reduced by about 45 kg ha−1 by the N removal function of the paddy field and by about 39 kg ha−1 by the recycling irrigation facility. The paddy field equipped with a recycling irrigation facility as an N removal facility was valued at 32.6 million Japanese yen (JPY) ha−1 and 0.72 million JPY ha−1 per year, which compare it with the construction and maintenance costs, respectively, of a water quality improvement facility. The recycling irrigation facility was costed at 17.3 million JPY ha−1 for construction and 0.21 million JPY ha−1 for maintenance per year. The cost for constructing and maintaining a recycling irrigation facility was 53% of the value of the paddy field area equipped with a recycling irrigation facility as an N removal facility.


Sign in / Sign up

Export Citation Format

Share Document