Model-based design of an agricultural biogas plant: application of Anaerobic Digestion Model No.1 for an improved four chamber scheme

2007 ◽  
Vol 55 (10) ◽  
pp. 21-28 ◽  
Author(s):  
B. Wett ◽  
M. Schoen ◽  
P. Phothilangka ◽  
F. Wackerle ◽  
H. Insam

Different digestion technologies for various substrates are addressed by the generic process description of Anaerobic Digestion Model No. 1. In the case of manure or agricultural wastes a priori knowledge about the substrate in terms of ADM1 compounds is lacking and influent characterisation becomes a major issue. The actual project has been initiated for promotion of biogas technology in agriculture and for expansion of profitability also to rather small capacity systems. In order to avoid costly individual planning and installation of each facility a standardised design approach needs to be elaborated. This intention pleads for bio kinetic modelling as a systematic tool for process design and optimisation. Cofermentation under field conditions was observed, quality data and flow data were recorded and mass flow balances were calculated. In the laboratory different substrates have been digested separately in parallel under specified conditions. A configuration of four ADM1 model reactors was set up. Model calibration identified disintegration rate, decay rates for sugar degraders and half saturation constant for sugar as the three most sensitive parameters showing values (except the latter) about one order of magnitude higher than default parameters. Finally, the model is applied to the comparison of different reactor configurations and volume partitions. Another optimisation objective is robustness and load flexibility, i.e. the same configuration should be adaptive to different load situations only by a simple recycle control in order to establish a standardised design.

2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Teddy Fen-Chong ◽  
Antonin Fabbri ◽  
Mickaël Thiery ◽  
Patrick Dangla

We revisit the poromechanics set up by Olivier Coussy for better understanding of the mechanical effect of partial freezing in cohesive porous materials. This approach proves to be able to quantitatively predict swelling even if the in-pore liquid does not expand when solidifying. In this case, dilation results from the so-called cryosuction process that dominates thermal shrinkage under cooling, as shown in our analysis conducted on the historical experiment run by Beaudoin and MacInnis (1974, “The Mechanism of Frost Damage in Hardened Cement Paste,” Cem. Concr. Res., 4, pp. 139–147) on benzene saturated 24-h old cement paste. Both mechanisms are also at work when freezing water saturated early age cement paste with air voids. In this case, the cryosuction process results in shrinkage and should be added to the thermal shrinkage, their respective amplitudes being temperature dependent but, a priori, of the same order of magnitude.


2021 ◽  
Vol 11 (4) ◽  
pp. 1399
Author(s):  
Jure Oder ◽  
Cédric Flageul ◽  
Iztok Tiselj

In this paper, we present uncertainties of statistical quantities of direct numerical simulations (DNS) with small numerical errors. The uncertainties are analysed for channel flow and a flow separation case in a confined backward facing step (BFS) geometry. The infinite channel flow case has two homogeneous directions and this is usually exploited to speed-up the convergence of the results. As we show, such a procedure reduces statistical uncertainties of the results by up to an order of magnitude. This effect is strongest in the near wall regions. In the case of flow over a confined BFS, there are no such directions and thus very long integration times are required. The individual statistical quantities converge with the square root of time integration so, in order to improve the uncertainty by a factor of two, the simulation has to be prolonged by a factor of four. We provide an estimator that can be used to evaluate a priori the DNS relative statistical uncertainties from results obtained with a Reynolds Averaged Navier Stokes simulation. In the DNS, the estimator can be used to predict the averaging time and with it the simulation time required to achieve a certain relative statistical uncertainty of results. For accurate evaluation of averages and their uncertainties, it is not required to use every time step of the DNS. We observe that statistical uncertainty of the results is uninfluenced by reducing the number of samples to the point where the period between two consecutive samples measured in Courant–Friedrichss–Levy (CFL) condition units is below one. Nevertheless, crossing this limit, the estimates of uncertainties start to exhibit significant growth.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jinghuai Gao ◽  
Dehua Wang ◽  
Jigen Peng

An inverse source problem in the modified Helmholtz equation is considered. We give a Tikhonov-type regularization method and set up a theoretical frame to analyze the convergence of such method. A priori and a posteriori choice rules to find the regularization parameter are given. Numerical tests are presented to illustrate the effectiveness and stability of our proposed method.


2009 ◽  
Vol 66 (7) ◽  
pp. 2107-2115 ◽  
Author(s):  
Cegeon J. Chan ◽  
R. Alan Plumb

Abstract In simple GCMs, the time scale associated with the persistence of one particular phase of the model’s leading mode of variability can often be unrealistically large. In a particularly extreme example, the time scale in the Polvani–Kushner model is about an order of magnitude larger than the observed atmosphere. From the fluctuation–dissipation theorem, one implication of these simple models is that responses are exaggerated, since such setups are overly sensitive to any external forcing. Although the model’s equilibrium temperature is set up to represent perpetual Southern Hemisphere winter solstice, it is found that the tropospheric eddy-driven jet has a preference for two distinct regions: the subtropics and midlatitudes. Because of this bimodality, the jet persists in one region for thousands of days before “switching” to another. As a result, the time scale associated with the intrinsic variability is unrealistic. In this paper, the authors systematically vary the model’s tropospheric equilibrium temperature profile, one configuration being identical to that of Polvani and Kushner. Modest changes to the tropospheric state to either side of the parameter space removed the bimodality in the zonal-mean zonal jet’s spatial distribution and significantly reduced the time scale associated with the model’s internal mode. Consequently, the tropospheric response to the same stratospheric forcing is significantly weaker than in the Polvani and Kushner case.


2021 ◽  
Vol 8 (1) ◽  
pp. 205395172110135
Author(s):  
Florian Jaton

This theoretical paper considers the morality of machine learning algorithms and systems in the light of the biases that ground their correctness. It begins by presenting biases not as a priori negative entities but as contingent external referents—often gathered in benchmarked repositories called ground-truth datasets—that define what needs to be learned and allow for performance measures. I then argue that ground-truth datasets and their concomitant practices—that fundamentally involve establishing biases to enable learning procedures—can be described by their respective morality, here defined as the more or less accounted experience of hesitation when faced with what pragmatist philosopher William James called “genuine options”—that is, choices to be made in the heat of the moment that engage different possible futures. I then stress three constitutive dimensions of this pragmatist morality, as far as ground-truthing practices are concerned: (I) the definition of the problem to be solved (problematization), (II) the identification of the data to be collected and set up (databasing), and (III) the qualification of the targets to be learned (labeling). I finally suggest that this three-dimensional conceptual space can be used to map machine learning algorithmic projects in terms of the morality of their respective and constitutive ground-truthing practices. Such techno-moral graphs may, in turn, serve as equipment for greater governance of machine learning algorithms and systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Pommé ◽  
K. Pelczar ◽  
K. Kossert ◽  
I. Kajan

AbstractThe 32Si decay rate measurement data of Alburger et al. obtained in 1982–1986 at Brookhaven National Laboratory have been presented repeatedly as evidence for solar neutrino-induced beta decay. The count rates show an annual sinusoidal oscillation of about 0.1% amplitude and maximum at February–March. Several authors have claimed that the annual oscillations could not be explained by environmental influences on the set-up, and they questioned the invariability of the decay constant. They hypothesised a correlation with changes in the solar neutrino flux due to annual variations in the Earth-Sun distance, in spite of an obvious mismatch in amplitude and phase. In this work, environmental conditions at the time of the experiment are presented. The 32Si decay rate measurements appear to be inversely correlated with the dew point in a nearby weather station. Susceptibility of the detection set-up to local temperature and humidity conditions is a likely cause of the observed instabilities in the measured decay rates. Similar conclusions apply to 36Cl decay rates measured at Ohio State University in 2005–2012.


2016 ◽  
Vol 806 ◽  
pp. 254-303
Author(s):  
R. J. Munro ◽  
M. R. Foster

A linearly stratified fluid contained in a circular cylinder with a linearly sloped base, whose axis is aligned with the rotation axis, is spun-up from a rotation rate $\unicode[STIX]{x1D6FA}-\unicode[STIX]{x0394}\unicode[STIX]{x1D6FA}$ to $\unicode[STIX]{x1D6FA}$ (with $\unicode[STIX]{x0394}\unicode[STIX]{x1D6FA}\ll \unicode[STIX]{x1D6FA}$) by Rossby waves propagating across the container. Experimental results presented here, however, show that if the Burger number $S$ is not small, then that spin-up looks quite different from that reported by Pedlosky & Greenspan (J. Fluid Mech., vol. 27, 1967, pp. 291–304) for $S=0$. That is particularly so if the Burger number is large, since the Rossby waves are then confined to a region of height $S^{-1/2}$ above the sloped base. Axial vortices, ubiquitous features even at tiny Rossby numbers of spin-up in containers with vertical corners (see van Heijst et al.Phys. Fluids A, vol. 2, 1990, pp. 150–159 and Munro & Foster Phys. Fluids, vol. 26, 2014, 026603, for example), are less prominent here, forming at locations that are not obvious a priori, but in the ‘western half’ of the container only, and confined to the bottom $S^{-1/2}$ region. Both decay rates from friction at top and bottom walls and the propagation speed of the waves are found to increase with $S$ as well. An asymptotic theory for Rossby numbers that are not too large shows good agreement with many features seen in the experiments. The full frequency spectrum and decay rates for these waves are discussed, again for large $S$, and vertical vortices are found to occur only for Rossby numbers comparable to $E^{1/2}$, where $E$ is the Ekman number. Symmetry anomalies in the observations are determined by analysis to be due to second-order corrections to the lower-wall boundary condition.


1972 ◽  
Vol 2 (1) ◽  
pp. 33-36 ◽  
Author(s):  
W. L. F. Brinkmann

Abstract: Spherical ceramic bulbs were set up as weekly water-loss integrators on a clearing and below a 2 year-old Cecropia-commumty at Km 18 of the Manaus-Itacoatiara Road. The instruments worked well in distinguishing the particular responses of individual sites to the impact of atmospheric agents as solar radiation, air temperature, air humidity and wind. Water-loss was primarily dependent on the order of magnitude of the weekly total of solar radiation and the presence or lack of a standing crop. Already a scarce secondary growth will reduce the weekly amount of water lost to the atmosphere considerably. Shelter-wood, however, considering the crop specific demands if introduced to tropical agriculture would provide favourable conditions as far as the impact of atmospheric controls on the tropical environment are concerned.


2005 ◽  
Vol 23 (4) ◽  
pp. 1467-1471 ◽  
Author(s):  
Y. Y. Shprits ◽  
R. M. Thorne ◽  
G. D. Reeves ◽  
R. Friedel

Abstract. A time dependent radial diffusion model is used to quantify the competing effects of inward radial diffusion and losses on the distribution of the outer zone relativistic electrons. The rate of radial diffusion is parameterized by Kp with the loss time as an adjustable parameter. Comparison with HEEF data taken over 500 Combined Release and Radiation Effects Satellite (CRRES) orbits indicates that 1-MeV electron lifetimes near the peak of the outer zone are less than a day during the storm main phase and few days under less disturbed conditions. These values are comparable to independent estimates of the storm time loss rate due to scattering by EMIC waves and chorus emission, and also provide an acceptable representation of electron decay rates following the storm time injection. Although our radial diffusion model, with data derived lifetimes, is able to simulate many features of the variability of outer zone fluxes and predicts fluxes within one order of magnitude accuracy for most of the storms and L values, it fails to reproduce the magnitude of flux changes and the gradual build up of fluxes observed during the recovery phase of many storms. To address these differences future modeling should include an additional local acceleration source and also attempt to simulate the pronounced loss of electrons during the main phase of certain storms.


2021 ◽  
Author(s):  
Dihui Chen ◽  
Yanjie Shen ◽  
Juntao Wang ◽  
Yang Gao ◽  
Huiwang Gao ◽  
...  

Abstract. To study sea-derived gaseous amines, ammonia, and primary particulate aminium ions in the marine atmospheres of China's marginal seas, an onboard URG-9000D Ambient Ion Monitor-Ion chromatography (AIM-IC, Thermo Fisher) was set up on the front deck of the R/V Dongfanghong 3 to semi-continuously measure the spatiotemporal variations in the concentrations of atmospheric trimethylamine (TMAgas), dimethylamine (DMAgas), and ammonia (NH3gas) along with their particulate matter (PM2.5) counterparts. In this study, we differentiated marine emissions of the gas species originating from continental transport using data obtained from December 9 to 22, 2019 during the cruise over the Yellow and Bohai Seas, facilitated by additional measurements collected at a coastal site near the Yellow Sea during summer 2019. The data obtained during the cruise and the coastal site demonstrated that the observed TMAgas and protonated trimethylamine (TMAH+) in PM2.5 over the Yellow and Bohai Seas overwhelmingly originated from marine sources. During the cruise, there was no significant correlation (P > 0.05) between the simultaneously measured TMAH+ and TMAgas concentrations. Additionally, the concentrations of TMAH+ in the marine atmosphere varied around 0.28 ± 0.18 μg m−3 (average  ±  standard deviation), with several episodic hourly average values exceeding 1 μg m−3, which were approximately one order of magnitude larger than those of TMAgas (approximately 0.031 ± 0.009 μg m−3). Moreover, there was a significant negative correlation (P < 0.01) between the concentrations of TMAH+ and NH4+ in PM2.5 during the cruise. Therefore, the observed TMAH+ in PM2.5 was overwhelmingly derived from primary sea-spray aerosols. Using the TMAgas and TMAH+ in PM2.5 as tracers for sea-derived basic gases and sea-spray particulate aminium ions, the values of non-sea-derived DMAgas and NH3gas, as well as non-sea-spray particulate DMAH+ in PM2.5, were estimated, and the estimated average values of each species contributed to 16 %, 34 %, and 65 % of the observed average concentrations, respectively. Uncertainties remained in the estimations as TMAH+ may decompose into smaller molecules in seawater to varying extents. The non-sea-derived gases and non-sea-spray particulate DMAH+ likely originated from long-range transport from the upwind continents, according to the recorded offshore winds and increased concentrations of SO42− and NH4+ in PM2.5. The lack of a detectable increase in the particulate DMAH+, NH4+, and SO42− concentrations in several SO2 plumes did not support the secondary formation of particulate DMAH+ in the marine atmosphere.


Sign in / Sign up

Export Citation Format

Share Document