Biosorption of chromium(VI), nickel(II) and Remazol Blue by Rhodotorula muciloginosa biomass

2012 ◽  
Vol 65 (3) ◽  
pp. 471-477 ◽  
Author(s):  
Nalan Oya San ◽  
Gönül Dönmez

The passive removal of commonly used reactive dye and two heavy metals, from aqueous solutions by inexpensive biomaterial, yeast Rhodotorula muciloginosa biomass, termed biosorption, was studied with respect to pH, initial dye concentration and initial metal ion concentration. The biomass exhibited maximum dye and chromium(VI) uptake at pH 5 and pH 6 for nickel(II) in media containing 50 mg/L heavy metal and 50 mg/L remazol blue. It was found that the highest chromium(VI) removal yields measured were 31.3% for 49.0 mg/l initial chromium(VI) concentrations. The nickel(II) removal yield was 32.5% for 22.3 mg/L. Higher R. Blue removal yields were obtained, such as 77.1% for 117.5 mg/L. The maximum dye biosorption yield was investigated in medium with a constant dye (∼50 mg/L) and increasing heavy metal concentration. In the medium with 48.8, 103.8 and 151.8 mg/L chromium(VI) and constant dye concentration, the maximum chromium(VI) biosorption was 7.4, 9.3 and 17.1%, whereas the maximum dye biosorption was 61.6, 56.6 and 55.9%. The maximum nickel(II) biosorptions in the medium with dye were 38.1, 22.1 and 8.8% at 23.7, 37.7 and 60.1 mg/L nickel(II) concentrations. In these media, dye biosorptions were 93.9, 86.4 and 93.3%, respectively.

Author(s):  
Audronė Mikalajunė ◽  
Lina Jakučionytė

Vehicles release large amounts of heavy metals to the environment. There have been done a lot of investigations analysing the distribution of heavy metals in soils near intensive regional roads. However, there is lack of investigations into the impact of small-intensity gravel roads on roadside soil contamination with heavy metals. The object of this investigation is four gravel roads of local significance connecting small villages. The intensity of these roads is very low. The gravel roads are chosen according to application of dust-minimizing materials, for example, CaCl2 and oil emulsion. According to our results, none of the soil samples had an excess of heavy metal concentration limit. Besides, heavy metal concentrations were decreasing with a distance from the road increasing. We can make an assumption that road dust-minimizing materials do not have a significant impact on heavy metal distribution in roadside soils. The major factors of heavy metal pollution distribution in roadside soils are traffic intensity, roadside trenches, and topographic conditions. Santrauka Eksploatuojant autotransportą, į aplinką patenka daug sunkiųjų metalų. Atlikta nemažai tyrimų sunkiųjų metalų paplitimuidirvožemyje šalia intensyvių magistralinių kelių nustatyti, tačiau mažo intensyvumo keliai šiuo požiūriu tiriami mažai.Tirti pasirinkta 4 žvyrkeliai – vietinės reikšmvs keliai, jungiantys nedideles gyvenvietes. Eismo intensyvumas šiuose keliuose mažas. Žvyrkeliai pasirinkti pagal taikomas priemones dulkėtumui mažinti, t. y. du nagrinvjami žvyrkeliai apdorotiCaCl2, kiti du – naftos emulsija. Nė viename mėginyje sunkiųjų metalų koncentracijos neviršijo DLK, o tolstant nuo važiuojamosios kelio dalies sunkiųjų metalų koncentracijos buvo mažesnės. Galima daryti prielaidą, kad kelio apdorojimo medžiagos dulkėtumui mažinti žymios įtakos sunkiųjų metalų pasiskirstymui pakelių dirvožemyje nedaro, lemia transporto srauto intensyvumas, kelio grioviai pakelėse bei reljefo sąlygos. Резюме При эксплуатации автомобилей в окружающую среду попадает много тяжелых металлов. Проведено немалоисследований, посвященных анализу распространения тяжелых металлов в почве обочин интенсивно эксплуатируемых магистральных дорог, однако исследований, касающихся аналогичных проблем дорог малой интенсивности, в настоящее время имеется немного. В настоящей работе в качестве объекта исследований выбраны четыредороги местного значения с гравийным покрытием, соединяющие небольшие поселения. Интенсивность дорог небольшая. Гравийные дороги выбраны с учетом их обработки для уменьшения пыльности – две дороги обработаны с применением CaCl2, а две другие – с применением нефтяной эмульсии. Ни в одной пробе не былозафиксировано концентраций тяжелых металлов, превышающих допустимые нормами. С удалением от проезжей части концентрации тяжелых металлов уменьшались. На основании исследований можно сделать вывод о том,что материалы, применявшиеся для уменьшения пыльности дорог, большого влияния на распространениетяжелых металлов в почве обочин дорог не оказывают. На распространение тяжелых металлов в почве обочин оказывает влияние интенсивность транспортного потока, кюветы на обочинах и условия рельефа.


2016 ◽  
Vol 31 (4) ◽  
Author(s):  
Sock Yin Tan ◽  
Sarva Mangala Praveena ◽  
Emilia Zainal Abidin ◽  
Manraj Singh Cheema

AbstractIndoor dust acts as a media for heavy metal deposition. Past studies have shown that heavy metal concentration in indoor dust is affected by local human activities and atmospheric transport can have harmful effects on human health. Additionally, children are more sensitive to heavy metals due to their hand-to-mouth behaviour and rapid body development. However, limited information on health risks were found in past dust studies as these studies aimed to identify heavy metal concentrations and sources of indoor dust. The objective of this review is to discuss heavy metal concentration and sources influencing its concentration in indoor dust. Accordingly, high lead (Pb) concentration (639.10 μg/g) has been reported in heavy traffic areas. In addition, this review paper aims to estimate the health risk to children from heavy metals in indoor dust via multiple exposure pathways using the health-risk assessment (HRA). Urban areas and industrial sites have revealed high heavy metal concentration in comparison to rural areas. Hazard index (HI) values found in arsenic (As), chromium (Cr) and Pb were 21.30, 1.10 and 2.40, respectively, indicate that non-carcinogenic elements are found in children. Furthermore, most of the past studies have found that carcinogenic risks for As, cadmium (Cd), Cr and Pb were below the acceptable total lifetime cancer risk (TLCR) range (1×10


2011 ◽  
Vol 343-344 ◽  
pp. 340-343
Author(s):  
Ri Cha Hu ◽  
Li Bo Sun

Based on the soil test of heavy metals in wastewater irrigation area in eastern Inner Mongolia, this paper analyses the content of heavy metals Cr, Cu, Cd, Pb in different layers of soil samples and reveals the internal relations between heavy metal concentration gradient in the vertical direction and soil properties, thus providing a scientific basis to guide sewage irrigation, solve the problem of water shortage in wastewater irrigation area and carry out environmental impact assessment. Soil is an important subsystem in natural environmental systems, through which many pollutants, especially heavy metals, produced by human activities, enter the food chain and ultimately do harm to human health. Currently, heavy metal ion contamination to the soil caused by wastewater irrigation has become one of the focuses in the study of soil chemistry and agricultural environment pollution. For this reason, it is particularly important to study the migration mechanism of heavy metals in soil and to provide a reliable theoretical basis for the prevention and management of soil contaminants.


2017 ◽  
Vol 2 (3) ◽  
pp. 156
Author(s):  
S.A. Bhutada ◽  
S.B. Dahikar

At present various microorganisms are used for bioremediation of heavy metals from soil and water bodies. The aim of present work was to isolate the potential heavy metal degrading organisms and to apply for bioremediation of heavy metals from the domestic as well as industrial waste. The study involves the isolation of the bacterial species residing the natural habitat of such environments and screening of these isolates to degrade different heavy metals such as Cu, Cd, Hg, Ni, and Zn  up to the concentration 2000 ppm. There were six bacterial potential isolates  found namely Pseudomonas spp., (3), Achromobacter spp., Uncultured Microbacterium spp., and Exigoubacterium spp., which showing the growth up to the concentration of 2000 ppm. The potency of the six potential isolates was determined by using the conventional plate count technique.  The percentage removal of analyzed by the use of ICP-AES technique. The study shows isolation of the species which can remove heavy metal up to 60%. It was also found that the increase in the incubation time causes more reduction in the heavy metal concentration. The mutational analysis of the isolates for the strain improvement process shows that the Exigoubacterium species can grow at 3000 ppm heavy metal concentration and showed 60% reduction in heavy metal. This highly potential species can be used for the removal of different heavy metals which is also a viable, eco friendly and cost effective technology for cleanup of the environment. 


Baltica ◽  
2019 ◽  
Vol 32 (1) ◽  
pp. 51-62
Author(s):  
Alexander Krek ◽  
Aleksandr Danchenkov ◽  
Marina Ulyanova ◽  
Darya Ryabchuk

The scope of the study was to assess the impact of potential sources of Cu, Zn, Co, Ni, and Cr on bottom sediments of the Russian sector of the south-eastern Baltic Sea. A total of 68 samples were taken and analyzed for grain-size (laser diffraction and sieve method) and heavy metal concentration (atomic absorption spectroscopy method). To avoid the influence of the sorption capacity of the fine-grained sediments to accumulate the pollutants, the normalization of the heavy metal concentration to Fe was applied. The environmental indices (contamination factor and modified degree of contamination) were calculated. The research has shown the contribution of oil platform, pipelines, ports and wastewater treatment facilities on the geochemical composition of bottom sediments. The authors have identified the level of heavy metals contamination of the middle parts of the Curonian and Vistula spits as a result of alongshore transport of pollutants.


Author(s):  
Nachana’a Timothy

Heavy metal concentration in roadside soil and plants are increasingly becoming of health concern. This work determined the concentration of selected heavy metals (Cd, Pb, Zn, Cr, Fe, Mg, Mn, Co, Ni and Cu) in roadside soils and plants samples from selected sites (Plaifu, Shiwa, Fadama-rake and Damdrai) along major road in Hong. Soil samples were taken 10 m, 20 m and 30 m away from the edge of the road at the  depth of 0-10 cm, 10-20 cm and 20-30 cm. Plant samples were randomly collected within the vicinity where the soil samples were taken and were analysed using Atomic Absorption Spectrophotometer. The result revealed the trend in soil heavy metal concentration was Fe > Mn > Mg > Pb > Zn > Ni > Co > Cu > Cr > Cd and for plant the trend was Fe > Mn > Mg > Zn > Pb > Ni > Cu > Cd > Co > Cr. The concentrations decreased with increasing distance away from the edge of the road as well as with depth at which the soil sample were taken. The transfer factor showed that the concentration of Zn, Mn, Cu and Mg were greater than 1, which shows that plant were enriched by Zn, Mn, Cu and Mg from the soil. Mg and Cd equal to 1 at Plaifu and Damdrai. Most of the values of TF at the study area super pass 0.5, which implies that generally, the ability of bioaccumulation of these heavy metals in examined plants were relatively high.


2019 ◽  
Vol 21 (1) ◽  
pp. 69-82
Author(s):  
Iyabode Olusola Taiwo ◽  
Olaniyi Alaba Olopade ◽  
Nathanael Akinsafe Bamidele

Abstract This research was undertaken to find out the levels of five heavy metals (Cu, Fe, Mn, Pb, and Zn) in the muscles of eight fish species from Epe Lagoon. The levels of heavy metals were determined by atomic absorption spectrophotometry after digestion of the samples using Kjldahl heating digester. The heavy metal concentrations among the fish species were statistically dissimilar (P < 0.5). The heavy metals of Pb, Fe, and Mn were above the FAO/WHO agreeable limits for human consumption.


2021 ◽  
Vol 11 (11) ◽  
Author(s):  
Satyam Srivastava ◽  
Vinay Sharma

AbstractHeavy metals are very toxic and hazardous for human health. Onsite screening of heavy metal contaminated samples along with location-based automation data collection is a tedious job. Traditionally high-end equipment’s such as gas chromatography mass spectrometer (GC–MS) and atomic absorption spectrometers have been used to measure the concentration of different heavy metals in water samples but most of them are costly, bulky, and time consuming, and requires expert human intervention. This manuscript reports an ultra-portable, rapid, cost-effective, and easy-to-use solution for onsite heavy metal concentration measurement in drinking water samples. Presented solution combines off-the-shelf available chemical kits for heavy metal detection and developed spectrometer-based readout for concentration prediction, quality judgment, and automatic data collection. Two chemical kits for copper and iron detection have been imported form Merck and have been used for overall training and testing. The developed spectrometer has capability to work with smartphone-based android app and also can work in standalone mode. The developed spectrometer uses white light-emitting diode as a source and commercially imported spectral sensor (AS7262) for visible radiation reception. A low-power sub-GHZ-based wireless embedded platform has been developed and interfaced with source and detector. A power management module also has been designed to monitor the battery status and also to generate low battery indication. Overall modules has been packaged in custom designed enclosure to avoid external light interference. The developed system has been trained using standard buffer samples with known heavy metal concentrations and further tested for water samples collected from institute colony and nearby villages. The obtained results have been validated with commercially imported system from HANNA instruments, and it has been observed that developed system has shown excellent accuracy to predict heavy metal concentration (tested for Fe and Cu) in water samples.


2019 ◽  
Vol 75 ◽  
pp. 1-12
Author(s):  
Aroloye O. Numbere

This study is based on bioaccumulation of total hydrocarbon (THC) and heavy metals in body parts of the West African red mangrove crab (G. pelii), which inhabit polluted mangrove forests. Thirty crabs were captured in October, 2018 and sorted into male and female. Their lengths and widths were measured, and body parts dismembered and oven-dried at 70 ͦ C for 48 hours. Physicochemical analysis for Cadmium (Cd), Zinc (Zn), Lead (Pb) and THC was measured by spectrophotometric method using HACH DR 890 colorimeter (wavelength 420 nm) and microwave accelerated reaction system (MARS Xpress, North Carolina) respectively. There was no significant difference (P > 0.05) in THC and heavy metals in the body parts of crabs.  However, Zinc was highest in claw (993.4±91.3 mg/l) and body tissues (32.5±1.9 mg/l), Pb was highest in carapace (34.6±2.8 mg/l) and gill (151.9±21.6 mg/l) while THC was highest in intestine (39.5±2.9 mg/l) and gut (52.4±13.4 mg/l). The order of concentration is Zn>Pb>THC>Cd. Male crabs had slightly higher THC and heavy metal concentration than female crabs probably because of their large size. There is negative correlation between carapace area and THC concentration (R = -0.246), meaning THC decreases with increasing carapace size. Internal parts of crab had higher THC and heavy metal concentration than external parts. These results show that there is high bioaccumulation of THC and heavy metals in crab, which is above WHO/FAO standard. This implies that the crabs are unfit for human consumption. The smaller the crab the better it is for consumption in terms of bioaccumulation of pollutants.


2021 ◽  
Author(s):  
Adeyela Ibironke Okunlola ◽  
Dotun Nathaniel Arije ◽  
Katherine Olayinka Olajugbagbe

A completely randomized design with three replicates was conducted at the Screen house of the Department of Crop Soil and Pest Management, Federal University of Technology Akure, Ondo State, to examine the phytoremediation potential of Codiaeum variegatum and Basella alba on contaminated soils from four locations. Soils were collected from the Mechanic workshop, Dumpsite, Forest Topsoils, and Effluent site, and filled into the buckets. Initial soil analysis was conducted on all the soils to determine heavy metal concentration (Cu, Cd, Ni, Pb, and Zn). At 12 weeks after planting, soil and plant (root and shoot) samples were analyzed to determine the heavy metals accumulated. WHO permissible limit value for heavy metal concentration in soil and plant were used as a standard to evaluate plant phytoremediation potential. Results from the study confirm the phytoremediation potential of C. variegatum and its high tolerance for the accumulation of heavy metals. B. alba plant also shows its potential in removing heavy metals from the soil, but it was not as tolerant as C. variegatum as B. alba planted in soils from mechanic workshop and effluent site had stunted growth.


Sign in / Sign up

Export Citation Format

Share Document