Characteristics of nitrogen and phosphorus removal by a surface-flow constructed wetland for polluted river water treatment

2015 ◽  
Vol 71 (6) ◽  
pp. 904-912 ◽  
Author(s):  
Mawuli Dzakpasu ◽  
Xiaochang Wang ◽  
Yucong Zheng ◽  
Yuan Ge ◽  
Jiaqing Xiong ◽  
...  

The characteristics of nitrogen (N) and phosphorus (P) removal were studied during the 2-year operation of a free water surface flow wetland of 900 m2 with hydraulic loading of 0.1 m/d to evaluate its potential to treat water from an urban stream polluted with municipal and industrial wastewater. Attention was focused on the removal of dissolved N and P by harvesting plants (local Phragmites australis and Typha orientalis) at the end of each growing season. According to findings, the removals of N and P increased from 47.1% and 17.6%, respectively, in the 1st year to 52.3% and 32.4%, respectively, in the 2nd year. Increments of N and P removal were largely attributable to plant biomass, which increased from an average dry weight of 1.77 kg/m2 in the 1st year to 3.41 kg/m2 in the 2nd year. The amount of nutrients assimilated by plants in the 2nd year was almost double that of the 1st year. Increasing biomass in the 2nd year also improved redox conditions in the substrate layer, which contributed to increasing the efficiency of N removal. Compared with T. orientalis, P. australis was more competitive and adapted to conditions in the wetland better; it regenerated more vigorously and contributed more to nutrient removal.

2011 ◽  
Vol 71-78 ◽  
pp. 2844-2847
Author(s):  
Hai Yan Guo ◽  
Teng Teng Feng ◽  
Zhi Gang Liu ◽  
Zhen Guo

Laboratory scale experiments were conducted to study the performance and characteristics of nitrogen (N) and phosphorus (P) removal of a sequencing batch moving bed biofilm reactor (SBMBBR) with simple anaerobic/aerobic operating mode. Experimental results indicated that, under the operating condition of influent N concentration of 114 mg/L and P concentration of 12 mg/L, N and P removal efficiency reached 95% and 94% respectively under the conditions of influent COD/N (C/N) ratio of 2.8 to 4.0. Track studies of N, P and other operating parameters demonstrated that N removal was accomplished by anoxic denitrification during the filling and mixing stage and simultaneous nitrification and denitrification (SND) process in aerobic stage, while removal of P was realized through conventional phosphorus removal and denitrifying phosphorus removal processes.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 89-94 ◽  
Author(s):  
H.Y. Chang ◽  
C.F. Ouyang

This investigation incorporated a stepwise feeding strategy into the biological process containing anaerobic/oxide/anoxic/oxide (AOAO) stages to enhance nitrogen and phosphorus removal efficiencies. Synthetic wastewater was fed into the experimental reactors during the anaerobic and anoxic stages and the substrates/nutrients were successfully consumed without recycling either nitrified effluent or external carbon source. An intrinsic sufficient carbon source developed during the anoxic stage and caused the NOx (NO2-N+NO3-N) concentration to be reduced from 11.85mg/l to 5.65mg/l. The total Kjeldahl nitrogen (TKN) removal rate was between 81.81%∼93.96% and the PO4-P removal ratio ranged from 93%∼100%. The substrate fed into the anaerobic with a Q1 flow rate and a Q2 into the anoxic reactor. The three difference experiments contained within this study produced Q1/Q2 that varied from 7/3, 8/2, and 9/1. The AOAO process saved nearly one-third of the energy compared with typical biological nutrient removal (BNR) system A2O processes.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 207-214 ◽  
Author(s):  
J.J. Lee ◽  
C.U. Choi ◽  
M.J. Lee ◽  
I.H. Chung ◽  
D.S. Kim

This research is concerned with the removal of ammonia nitrogen and phosphorus in foodwaste by crystallization. Reductions have been achieved by struvite formation after the addition of magnesium ions (Mg2+). Magnesium ions used in this study were from magnesium salts of MgCl2. The results of our analysis using scanning electron microscopy and energy dispersive X-ray analysis showed that the amount of struvite in precipitated sludge grew enough to be seen with the naked eye (600-700μm). EDX analysis also showed that the main components of the struvite were magnesium and phosphorus. NH3-N removal efficiency using MgCl2 was 67% while PO4-P removal efficiency was 73%. It was confirmed that nitrogen and phosphorus could be stabilized and removal simultaneously through anaerobic digestion by Mg, NH3 and PO4-P, which were necessary for struvite formation.


2012 ◽  
Vol 518-523 ◽  
pp. 2597-2603
Author(s):  
Na He ◽  
Zhan Xiang Sun ◽  
Yu Long Zhang ◽  
Ming Da Liu

This study focused on the comparisons between nitrogen and phosphorus removal rates from the simulated wastewater using various kinds of aquatic plants (4 emergent and 3 floating plants). Results showed that aquatic plants has a significant effect on the removal of NO3--N and TP, but has a less effect on NH4+-N. Among the four emergent plants, the order of NO3--N removal capacities was: S. sagittifolia > S. tabernaemontani > T. latifolia > A. calamus. But for TP, the order was: T. latifolia > A. calamus > S. tabernaemontani > S. sagittifolia. To the floating plants, the order of NO3--N and TP removal capacities were: E. crassipes > P. stratiotes. The ANOVA analyses showed that there was a significant difference between planted treatments and unplanted treatment for the removal of NO3--N and TP. The study suggests that the treatment of simulated wastewater using the aquatic macrophytes was effective in the removal of nutrients.


1991 ◽  
Vol 24 (10) ◽  
pp. 231-237
Author(s):  
W. G. Werumeus Buning ◽  
F. W. A. M. Rijnart ◽  
P. P. Weesendorp

To meet two levels of nitrogen and phosphorus removal (effluent standards Ntot 20 and 10 mg/l and Ptot 2 and 1 mg/l respectively) various systems were compared in a desk study. After a cost estimate and an assessment f the advantages and drawbacks, the oxidation ditch with biological by pass phosphate removal turned out to be the best system.


2009 ◽  
Vol 59 (11) ◽  
pp. 2093-2099 ◽  
Author(s):  
H. Lee ◽  
J. Han ◽  
Z. Yun

A lab-scale UCT-type membrane bio-reactor (MBR) was operated for biological nitrogen (N) and phosphorus (P) removal simultaneously. In order to examine biological nutrient removal (BNR) characteristics of MBR, the lab unit was fed with a synthetic strong and weak wastewater. With strong wastewater, a simultaneous removal of N and P was achieved while application of weak wastewater resulted in a decrease of both N and P removal. Recycled nitrate due to the limited organic in weak wastewater operation probably caused a nitrate inhibition in anaerobic zone. In step feed modification with weak wastewater, both N and P removal capability recovered in the system, indicating that the allocation of COD for denitrification at anoxic zone was a key to increase the biological P removal. In addition, the analysis on the specific P uptake rate in anoxic zone demonstrated that denitrifying phosphorus accumulating organism (dPAO) played an important role to remove up to 40% of P along with N. The sludge production characteristics of UCT-type MBR were similar to ordinary activated sludge with BNR capability.


2015 ◽  
Vol 72 (4) ◽  
pp. 528-534 ◽  
Author(s):  
Yang Bai ◽  
Xie Quan ◽  
Yaobin Zhang ◽  
Shuo Chen

A University of Cape Town process coupled with integrated fixed biofilm and activated sludge system was modified by bypass flow strategy (BUCT–IFAS) to enhance nitrogen and phosphorus removal from the wastewater containing insufficient carbon source. This process was operated under different bypass flow ratios (λ were 0, 0.4, 0.5, 0.6 and 0.7, respectively) to investigate the effect of different operational modes on the nitrogen (N) and phosphorus (P) removal efficiency (λ = 0 was noted as common mode, other λ were noted as bypass flow mode), and optimizing the N and P removal efficiency by altering the λ. Results showed that the best total nitrogen (TN) and total phosphorus (TP) removal performances were achieved at λ of 0.6, the effluent TN and TP averaged 14.0 and 0.4 mg/L meeting discharge standard (TN < 15 mg/L, TP < 0.5 mg/L). Correspondingly, the TN and TP removal efficiencies were 70% and 94%, respectively, which were 24 and 41% higher than those at λ of 0. In addition, the denitrification and anoxic P-uptake rates were increased by 23% and 23%, respectively, compared with those at λ of 0. These results demonstrated that the BUCT–IFAS process was an attractive method for enhancing nitrogen and phosphorus removal from wastewater containing insufficient carbon source.


2021 ◽  
Vol 258 ◽  
pp. 08011
Author(s):  
Van Nu Thai Thien ◽  
Dang Viet Hung ◽  
Nguyen Thi Thanh Hoa ◽  
Thi Ha Nguyen ◽  
Phan Thanh Trong

Anaerobic/Anoxic/Oxic – Membrane BioReactor (A2O-MBR) system including A2O unit at short solids retention time (SRT) for accumulation of PO43--P and MBR at long SRT for nitrification of NH4+-N was used to enhance simultaneous removal of nitrogen and phosphorus from brewery wastewater. The model of A2O-MBR system made from polyacrylic with the capacity of 49.5 liters was operated with organic loading rate of 0.75 kgCOD/m3.day. Nitrate recycling ratio was increased from 100 to 300% while sludge recirculation ratio was maintained at 100%. The results showed that for the nitrate recycling ratios of 100, 200, 300%, average NH4+-N and total nitrogen (TN) removal efficiencies of the model were 95.7 and 72.4, 99.2 and 86.7, 99.3 and 89.6%, respectively. The removal efficiencies of chemical oxygen demand (COD) and total phosphorus (TP) were over 90 and 75%, respectively, regardless of nitrate recirculation ratio. The output values of COD, NH4+-N, TN and TP were within the limits of Vietnam National Technical Regulation on Industrial Wastewater (QCVN 40:2011/BTNMT), column A, throughout the experiments. The model with recommended system configuration and optimum operational conditions could treat not only nitrogen but also phosphorus well due to appropriate nitrate recycling ratios.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 170 ◽  
Author(s):  
Massimo Tolomio ◽  
Nicola Dal Ferro ◽  
Maurizio Borin

Surface flow constructed wetlands (SFCWs) can be effectively used to treat agricultural drainage waters, reducing N and P surface water pollution. In the Venice Lagoon drainage basin (northeastern Italy), an SFCW was monitored during 2007–2013 to assess its performance in reducing water, N, and P loads more than 10 years after its creation. Nitrogen concentrations showed peaks during winter due to intense leaching from surrounding fields. Phosphorus concentrations were higher after prolonged periods with no discharge, likely due to mobilization of P of the decomposing litter inside the basin. Over the entire period, N removal efficiency was 83% for NO3–N and 79% for total N; P removal efficiency was 48% for PO4–P and 67% for total P. Values were higher than in several other studies, likely due to the fluctuating hydroperiod that produced discontinuous and reduced outflows. Nitrogen outlet concentrations were reduced by the SFCW, and N removal ratios decreased with increasing hydraulic loading, while no strong correlations were found in the case of P. The SFCW was shown to be an effective long-term strategy to increase water storage and reduce N and P loads in the Venice Lagoon drainage basin.


Sign in / Sign up

Export Citation Format

Share Document