Ammonia and phenol removal in an internal-circulate sequencing batch airlift reactor

2015 ◽  
Vol 72 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Qifeng Liu ◽  
Cong Du ◽  
Ting Yang ◽  
Zhimin Fu

Abstract An internal-circulate sequencing batch airlift reactor (IC-SBAR) has been developed to evaluate the efficiency of phenol and ammonia removal in treating synthetic wastewater. This study examined the effect of operation cycle on this system. Results showed that above 97.0% removal efficiencies of ammonia and phenol were achieved, which indicated that ammonia and phenol removals were not related to operation cycle. The average removal efficiency of 91.7% for chemical oxygen demand (COD) was achieved when the static/aerobic/settling time was 240 min/440 min/40 min. It was found that COD removal efficiency increased due to the time of operation cycle being prolonged. The average removal efficiencies of total inorganic nitrogen (TIN) were 65.8, 69.3 and 68.9% when average TIN concentrations were 78.0, 97.6 and 88.4 mg/L, respectively, in the influent. A cycle study showed that most phenol was degraded by aerobic microbes. Increasing the static time from 120 to 240 min resulted in the accumulation of NO2−-N, which indicated that the structures of the nitrifying bacterial community were changed.

2013 ◽  
Vol 67 (3) ◽  
pp. 587-593 ◽  
Author(s):  
L. Yerushalmi ◽  
M. Alimahmoodi ◽  
C. N. Mulligan

Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300–4,000 mg chemical oxygen demand (COD)/L, 42–115 mg total nitrogen (TN)/L, and 19–40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m3 d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960–2,400, 143–235 and 25–57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.


2017 ◽  
Vol 76 (5) ◽  
pp. 1044-1058 ◽  
Author(s):  
Amir Mohammad Mansouri ◽  
Ali Akbar Zinatizadeh

The performance of two bench scale activated sludge reactors with two feeding regimes, continuous fed (an up-flow aerobic/anoxic sludge fixed film (UAASFF) bioreactor) and batch fed (sequencing batch reactor (SBR)) with intermittent aeration, were evaluated for simultaneous nutrients (N, P) removal. Three significant variables (retention/reaction time, chemical oxygen demand (COD): N (nitrogen): P (phosphorus) ratio and aeration time) were selected for modeling, analyzing, and optimizing the process. At high retention time (≥6 h), two bioreactors showed comparable removal efficiencies, but at lower hydraulic retention time, the UAASFF bioreactor showed a better performance with higher nutrient removal efficiency than the SBR. The experimental results indicated that the total Kjeldahl nitrogen removal efficiency in the UAASFF increased from 70.84% to 79.2% when compared to SBR. It was also found that the COD removal efficiencies of both processes were over 87%, and total nitrogen and total phosphorus removal efficiencies were 79.2% and 72.98% in UAASFF, and 71.2% and 68.9% in SBR, respectively.


2021 ◽  
Vol 920 (1) ◽  
pp. 012038
Author(s):  
N A Rashid ◽  
S A W Mohtar ◽  
A L Rani ◽  
M F Omar ◽  
M A H Abdullah ◽  
...  

Abstract This work examines the effect of operational time of 6 hours on the removal of disperse dye from synthetic textile wastewater. Experiments were conducted daily at fill, react, settle, draw, and idle phase at 1 h, 1 h, 2 h, 1 h, 1 h respectively. The results showed that the highest removal efficiency of COD reached 77 %. Short operational time resulted in low COD removal efficiencies of disperse dye. The findings also revealed that when applying optimum operational time, sequencing batch reactor will achieve the highest growth of the bacteria responsible for the degradation of COD. When operational time increases, degradation becomes the dominant removal mechanisms of COD.


2004 ◽  
Vol 49 (5-6) ◽  
pp. 281-288 ◽  
Author(s):  
S.J. Kim ◽  
P.Y. Yang

A two-stage entrapped mixed microbial cell (2SEMMC) process which separates nitrification and denitrification phases by the installation of the anoxic and oxic EMMC reactors packed with EMMC carriers was operated with 6, 4, 3, and 2 hours of hydraulic retention time (HRT) using simulated domestic wastewater. The activated sludge was immobilized using cellulose acetate for the EMMC carriers. Similar soluble chemical oxygen demand (SCOD) removal efficiencies of 90-97% were observed for all HRTs (SCOD loading rate of 0.84-2.30 g/L/d) applied. In order to achieve more than 80 % of TN removal efficiency, the HRT should be maintained higher than 4 hours (less than 0.24 g/L/d of TN loading rate). Denitrification was a rate-limiting step which controlled overall TN removal efficiency at TN loading rate of 0.15-0.31 g/L/d although nitrification efficiencies achieved 97-99 %. The effluent TSS of less than 25 mg/L in the 2SEMMC process was maintained at the SCOD loading rate of less than 1.23 g/L/d with back-washing intervals of 5 and 10 days in the anoxic and oxic EMMC reactors, respectively. The minimum HRT of 4 hours is required for high removal efficiencies of organics (average 95.6 %) and nitrogen (average 80.5 %) in the 2SEMMC process with 3 times of recirculation ratio.


2019 ◽  
Vol 79 (5) ◽  
pp. 895-904 ◽  
Author(s):  
Priyanka Jamwal ◽  
Daniel Phillips ◽  
Kim Karlsrud

Abstract In the present study, three low-cost filter aggregate materials were tested and compared for organic matter and fecal coliform (FC) removal at the laboratory scale. Setups were subjected to synthetic wastewater at two hydraulic loading rates (HLR), i.e. 4 cm/day and 40 cm/day. The hydraulic retention time (HRT) at the two HLRs varied from 4 days to 12 h, respectively. The result obtained shows that the biochemical oxygen demand (BOD5) removal efficiency of aggregate materials decreased with the increase in HLR. Both at high and low HLR, the terracotta aggregate material exhibited maximum BOD5 loading removal and without significant difference for the case of FC removal efficiency for all the three aggregate materials. At higher HLR, cell debris and biofilm loss from the aggregate material contributed to the chemical oxygen demand (COD) levels in the treated water. The terracotta aggregate material provided best organic matter removal at both HLRs. The study demonstrates the potential of incorporating inexpensive and readily available local materials into decentralized, frugal green infrastructure interventions capable of lowering the quantum of harmful biological contaminants in open storm water channels in rapidly urbanizing cities of developing countries, and that the terracotta aggregate material provided best organic removal at both HLRs.


2019 ◽  
Vol 80 (4) ◽  
pp. 707-716 ◽  
Author(s):  
Min Sang ◽  
Miansong Huang ◽  
Wei Zhang ◽  
Wu Che ◽  
Huichao Sun

Abstract Bioretention is an effective technology for urban stormwater management, but the nutrient removal in conventional bioretention systems is highly variable. Thus, a pilot bioretention column experiment was performed to evaluate the nutrient control of systems with commercial activated carbon and river sediment-derived biochar. Significant chemical oxygen demand (COD) and total phosphorus (TP) leaching were found with the addition of activated carbon and biochar, but total nitrogen (TN) leaching was significantly improved when activated carbon was used as the medium. During a semi-synthetic runoff experiment, the bioretention systems containing two types of fluvial biochar showed relatively better COD and TN control (average mass removal efficiencies and cumulative removal efficiencies) than commercial activated carbon. However, the average TP mass removal efficiency with commercial activated carbon (95% ± 3%) was significantly higher than biochar (48% ± 20% and 56 ± 14%). The addition of biochar in the media increased the nitrogen removal efficiency, and the addition of activated carbon significantly increased the phosphorous removal efficiency. Therefore, both biochar and activated carbon are effective materials for bioretention, and fluvial biochar provides an alternative approach to comprehensively utilize river sediment.


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


2018 ◽  
Vol 78 (9) ◽  
pp. 1879-1892 ◽  
Author(s):  
Md Khalekuzzaman ◽  
Muhammed Alamgir ◽  
Mehedi Hasan ◽  
Md Nahid Hasan

Abstract In this research, a hybrid anaerobic baffled reactor (HABR) configuration was proposed consisting of a front sedimentation chamber and four regular baffled chambers followed by two floated filter media chambers for the treatment of domestic wastewater. Performance comparison of uninsulated and insulated HABRs was carried out operating at warm temperature (18.6–37.6 °C) under variable HRTs (30 h and 20 h). The study suggests that almost similar chemical oxygen demand (91% vs 88%), total suspended solids (90% vs 95%), turbidity (98% vs 97%), and volatile suspended solids (90% vs 93%) removal efficiencies were obtained for uninsulated and insulated HABRs. Higher removal of total nitrogen (TN) of 41%, NH4+-N of 44%, and NO3−-N of 91% were achieved by the insulated HABR compared to TN of 37%, NH4+-N of 36%, and NO3−-N of 84% by the uninsulated HABR, whereas lower PO43− removal efficiency of 17% was found in the insulated HABR compared to 24% in the uninsulated HABR. This indicated insulation increased nitrogen removal efficiencies by 4% for TN, 8% for NH4+-N and 7% for NO3−-N, but decreased PO43−removal efficiency by 7%.


1987 ◽  
Vol 22 (3) ◽  
pp. 474-490 ◽  
Author(s):  
R.L. Droste ◽  
S.R. Guiot ◽  
S.S. Gorur ◽  
K.J. Kennedy

Abstract Anaerobic treatment of dilute synthetic wastewater (300-1,000 mg chemical oxygen demand/L using laboratory upflow sludge blanket filter reactors with and without effluent recycle is described. Treatment of dilute synthetic wastewater at hydraulic retention times less than 1 and 2 h in reactors without and with recycle, respectively, resulted in biomass washout as the solids retention time decreased to less than 12 d. Reseeding would be required to operate at these critical hydraulic retention times for extended periods. Treatment of dilute synthetic wastewater at hydraulic retention times between 3-12 h resulted in soluble COD removal efficiencies between 84-95% treating 300 mg COD/L. At a 3 h hydraulic retention time, solids retention time of 80 d and stable reactor biomass concentrations of 25 g volatile suspended solids/L were maintained.


2007 ◽  
Vol 56 (2) ◽  
pp. 9-16 ◽  
Author(s):  
X.L. Melamane ◽  
R. Tandlich ◽  
J.E. Burgess

Wine distillery wastewaters (WDW) are acidic and have a high content of potential organic pollutants. This causes high chemical oxygen demand (COD) values. Polyphenols constitute a significant portion of this COD, and limit the efficiency of biological treatment of WDWs. WDW starting parameters were as follows: pH 3.83, 4,185 mg/l soluble COD (CODs) and 674.6 mg/l of phenols. During operation, amendments of CaCO3 and K2HPO4, individually or in combination, were required for buffering the digester. Volatile fatty acid concentrations were <300 mg/l throughout the study, indicating degradation of organic acids present. Mean CODs removal efficiency for the 130 day study was 87%, while the mean polyphenol, removal efficiency was 63%. Addition of 50 mg/l Fe3 +  between days 86 and 92 increased the removal efficiencies of CODs to 97% and of polyphenols to 65%. Addition of Co3 +  improved removal efficiencies to 97% for CODs and 92% for polyphenols. Optimization of anaerobic treatment was achieved at 30% WDW feed strength. Removal efficiencies of 92% and 84% were recorded at increased feed strength from days 108 to 130. High removal efficiencies of CODs and polyphenols after day 82 were attributed to the addition of macronutrients and micronutrients that caused pH stability and thus stimulated microbial activity.


Sign in / Sign up

Export Citation Format

Share Document