Synthesis of porous sulfonated carbon as a potential adsorbent for phenol wastewater

2015 ◽  
Vol 72 (9) ◽  
pp. 1594-1600 ◽  
Author(s):  
Azhagapillai Prabhu ◽  
Ahmed Al Shoaibi ◽  
C. Srinivasakannan

The work reports a facile synthesis procedure for preparation of porous sulfonated carbons and its suitability for adsorption of phenol. The sulfonated carbon was synthesized utilizing a simplified, single-step, shorter duration process by sulfonation, dehydration and carbonization of sucrose in sulfuric acid and tetraethylorthosilicate. The surface and internal structures of the adsorbents were characterized utilizing various characterization techniques to understand the porous nature and surface functional groups of the porous matrix. Adsorption capacity was found to be highest for the sample heat treated at 600 °C, with the maximum adsorption capacity of 440 mg/g at 30 °C. The adsorption isotherms were tested with the Freundlich and Langmuir adsorption isotherms models to identify the appropriate adsorption mechanism.

2021 ◽  
Vol 43 (4) ◽  
pp. 436-436
Author(s):  
Nida Shams Jalbani Nida Shams Jalbani ◽  
Amber R Solangi Amber R Solangi ◽  
Shahabuddin Memon Shahabuddin Memon ◽  
Ranjhan Junejo Ranjhan Junejo ◽  
Asif Ali Bhatti Asif Ali Bhatti

In current study, the diphenylaminomethylcalix[4]arene (3) was synthesized and immobilized onto silica surface to prepare a selective, regenerable and stable resin-4. The synthesized resin-4 has been characterized by FT-IR spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDX) and Brunauer-Emmett-Teller (BET) techniques. To check the adsorption capacity of resin-4, the batch and column adsorption methodology were applied and it has observed that the resin-4 was selectively removed Hg2+ ions under the optimized parameters. The maximum adsorption capacity was obtained at pH 9 using 25 mg/L of resin-4. Under the optimal conditions, different equilibrium, kinetic and thermodynamic models were applied to experimental data. The results show that adsorption mechanism is chemical in nature following Langmuir model with good correlation coefficient (R2=0.999) and having 712.098 (mmol/g) adsorption capacity. The energy of calculated from D-R model suggests the ion exchange nature of the adsorption phenomenon. Dynamic adsorption experiments were conducted using Thomas model. The maximum solid phase concentration (qo) was 7.5 and rate constant was found to be 0.176 with (R2=0.938) for Hg2+ ions. The kinetic study describes that the adsorption mechanism follows pseudo second order (R2=0.999). The thermodynamic parameters such as ∆H (0.032 KJ/mol) and ∆S (0.127 KJ/mol /K) and ∆G (-5.747,-6.306, -7.027 KJ/mol) shows that the adsorption of Hg2+ ion is endothermic and spontaneous. The reusability of resin-4 was also checked and it has observed that the after 15 cycle only 1.2 % adsorption reduces. Moreover, the resin-4 was applied on real wastewater samples obtained from local industrial zone of Karachi, Sindh-Pakistan.


2021 ◽  
Author(s):  
You Wu ◽  
Zuannian Liu ◽  
Bakhtari Mohammad Fahim ◽  
Junnan Luo

Abstract In this study, MIL-101(Fe), MIL-101(Fe,Cu), and Graphene Oxide (GO) /MIL-101(Fe,Cu) were synthesized to compose a novel sorbent. The adsorption properties of these three MOFs-based composites were compared toward the removal of phosphate. Furthermore, the influencing factors including reaction time, pH, temperature and initial concentration on the adsorption capacity of phosphate on these materials as well as the reusability of the material were discussed. The structure of fabricated materials and the removal mechanism of phosphate on the composite material were analyzed by Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis and zeta potential. The results show that the maximum adsorption capacity of phosphate by the composite GO/MIL-101(Fe,Cu)-2% was 204.60 mg·g− 1, which is higher than that of MIL-101(Fe,Cu) and MIL-101(Fe). likewise the specific surface area of GO/MIL-101(Fe,Cu)-2% is 778.11 m2/g is higher than that of MIL-101(Fe,Cu) and MIL-101(Fe),which are 747.75 and 510.66m2/g respectively. The adsorption mechanism of phosphate is electrostatic attraction, form coordination bonds and hydrogen bonds. The fabricated material is a promising adsorbent for the removal of phosphate with good reusability.


Alotrop ◽  
2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Melfi Puspita ◽  
M. Lutfi Firdaus ◽  
Nurhamidah Nurhamidah

The problem of environmental polution caused by waste of batik industry lately is increasing, so it needed a method to overcome that problem. The aim of this study was to determine the ability of activated charcoal from coconut fiber palm in adsorbing Reactive Red-120 and Direct Green-26 dyes in waste of batik along with determining the parameters of isotherms adsorption using UV-Vis Spectrophotometer analysis method. Variations of pH, contact time, adsorbent weight and temperature were carried out as variable to obtain optimum conditions of the adsorption process. The optimum of conditions for Reactive Red-120  occured at pH 3 and a contact time of 30 minutes, while Direct Green-26  occurred at pH 4 and a contact time of 40 minutes, with each adsorbent weight 150 mg and the temperature 30 °C. Adsorption isotherms determined by Freundlich and Langmuir models with maximum adsorption capacity (Qmax) were obtained for the Reactive Red-120  was 400 mg/g, while Direct Green-26 is 169 mg/g. 


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3692
Author(s):  
Oana Buriac ◽  
Mihaela Ciopec ◽  
Narcis Duţeanu ◽  
Adina Negrea ◽  
Petru Negrea ◽  
...  

Platinum is a precious metal with many applications, such as: catalytic converters, laboratory equipment, electrical contacts and electrodes, digital thermometers, dentistry, and jewellery. Due to its broad usage, it is essential to recover it from waste solutions resulted out of different technological processes in which it is used. Over the years, several recovery techniques were developed, adsorption being one of the simplest, effective and economical method used for platinum recovery. In the present paper a new adsorbent material (XAD7-DB30C10) for Pt (IV) recovery was used. Produced adsorbent material was characterized by X-ray dispersion (EDX), scanning electron microscopy (SEM) analysis, Fourier Transform Infrared Spectroscopy and Brunauer-Emmett-Teller (BET) surface area analysis. Adsorption isotherms, kinetic models, thermodynamic parameters and adsorption mechanism are presented in this paper. Experimental data were fitted using three non-linear adsorption isotherms: Langmuir, Freundlich and Sips, being better fitted by Sips adsorption isotherm. Obtained kinetic data were correlated well with the pseudo-second-order kinetic model, indicating that the chemical sorption was the rate-limiting step. Thermodynamic parameters (ΔG°, ΔH°, ΔS°) showed that the adsorption process was endothermic and spontaneous. After adsorption, metallic platinum was recovered from the exhausted adsorbent material by thermal treatment. Adsorption process optimisation by design of experiments was also performed, using as input obtained experimental data, and taking into account that initial platinum concentration and contact time have a significant effect on the adsorption capacity. From the optimisation process, it has been found that the maximum adsorption capacity is obtained at the maximum variation domains of the factors. By optimizing the process, a maximum adsorption capacity of 15.03 mg g−1 was achieved at a contact time of 190 min, initial concentration of 141.06 mg L−1 and the temperature of 45 °C.


2013 ◽  
Vol 69 (2) ◽  
pp. 298-304 ◽  
Author(s):  
Qingping Song ◽  
Chongxia Wang ◽  
Ze Zhang ◽  
Jiangang Gao

Adsorption of Pb(II) was studied using a novel xanthated carboxymethyl chitosan (XCC). The XCC was synthesized using the xanthation reaction of N-carboxymethyl chitosan (NCMC). The chemical structure of XCC was characterized by UV–visible spectra. The effects of initial pH value of the solutions, contact time and adsorption isotherms on adsorption of Pb(II) were investigated. Moreover, the possible adsorption mechanism was identified using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The experimental results showed XCC experienced a high adsorption capacity. The adsorption isotherm followed the Langmuir model. The maximum adsorption capacity obtained from the Langmuir model was 520.8 mg/g. Thermodynamic studies revealed a spontaneous and exothermic adsorption process. FTIR and XPS studies showed that the carboxyl groups, nitrogen atoms and sulfur atoms participated in the adsorption of Pb(II).


2017 ◽  
Vol 36 (1-2) ◽  
pp. 762-773 ◽  
Author(s):  
Xingmei Guo ◽  
Sihan Tang ◽  
Yan Song ◽  
Junmin Nan

The adsorptive removal of Ni2+ and Cd2+ at concentrations of approximately 50 mg L−1 in wastewater is investigated using an agricultural adsorbent, longan hull, and the adsorptive mechanism is characterized. The maximum adsorption capacity of approximately 4.19 mg g−1 Cd2+ was obtained under the optimized conditions of room temperature, pH 5.0, and a solid-to-liquid ratio of 1:30 in approximately 15 min. For Ni2+, the maximum adsorption capacity of approximately 3.96 mg g−1 was obtained at pH 4.7 in approximately 20 min. The adsorption kinetics for both metal ions on the longan hull can be described by a pseudo second-order rate model and are well fitted to the Langmuir adsorption isotherm. The adsorption mechanism of the longan hull to Ni2+ and Cd2+ ions is shown to be a monolayer adsorption of metal ions onto the absorbent surface. Thereinto, the longan hull adsorbent contains N–H, C–H, C=O, and C=C functional groups that can form ligands when loaded with Ni2+ and Cd2+, which reduces the fluorescence of the dried longan hull material.


Fibers ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 61
Author(s):  
Mónica A. Silva ◽  
Efres Belmonte-Reche ◽  
Maria T. P. de Amorim

Water contaminated with toxic dyes poses serious problems for human health and environmental ecosystems. Unfixed reactive dyes and their hydrolyzed form are soluble in water, thus, their removal is particularly challenging. Among the different methodologies, adsorption is probably the most common since it is easy to handle and has a low cost. Here, the removal by adsorption of hydrolyzed Reactive Black 5 (hydRB5) from a model wastewater through cellulose acetate/hematite membranes (CA/α-Fe2O3), designated as M1, M2 and M3, was performed. The pristine cellulose acetate membrane (CA) was designated as M0. Toward understanding the adsorption mechanism of hydRB5 on membranes, the rate of adsorption and maximum value of the adsorption capacity were evaluated using kinetic and isothermal studies, respectively. The results showed that the adsorption mechanism follows pseudo-first-order kinetics, and data are best fitted by the Langmuir isotherm method with a maximum adsorption capacity of 105.26 mg g−1 in pH~7. Furthermore, these membranes can be also regenerated by washing with NaOH and NaCl solutions, and the regeneration efficiency remains effective over five cycles. To complete the work, two statistical models were applied, an Analysis of Variance (ANOVA) and a Response Surface Methodology (RSM). The optimum value found is located in the usable region, and the experimental validation shows good agreement between the predicted optimum values and the experimental data. These composite membranes are also good candidates for the adsorption of other pollutants, even at industrial scale, due to their effective regeneration process and low production costs.


1992 ◽  
Vol 9 (3) ◽  
pp. 121-129 ◽  
Author(s):  
Mohammad S. El-Geundi ◽  
Ibrahim H. Aly

The adsorption of acid dyestuffs in solution onto maize cob has been investigated. Equilibrium isotherms have been determined for the adsopriton of Acid Blue 25 (AB 25) and Acid Red 114 (AR 114) onto maize cob. The L-shaped adsorption isotherms suggest that adsorption proceeds through ionic bonding and that the dye molecules are adsorbed in a flatwise manner on the surface of the maize cob particles. The maximum adsorption capacity of the maize cob was found to be 47.7 and 41.4 mg dye per g maize cob for AR 114 and AB 25, respectively.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wanqi Zhang ◽  
Yuhong An ◽  
Shujing Li ◽  
Zhechen Liu ◽  
Zhangjing Chen ◽  
...  

Abstract Thiol-lignocellulose sodium bentonite (TLSB) nanocomposites can effectively remove heavy metals from aqueous solutions. TLSB was formed by using –SH group-modified lignocellulose as a raw material, which was intercalated into the interlayers of hierarchical sodium bentonite. Characterization of TLSB was then performed with BET, FTIR, XRD, TGA, PZC, SEM, and TEM analyses. The results indicated that thiol-lignocellulose molecules may have different influences on the physicochemical properties of sodium bentonite, and an intercalated–exfoliated structure was successfully formed. The TLSB nanocomposite was subsequently investigated to validate its adsorption and desorption capacities for the zinc subgroup ions Zn(II), Cd(II) and Hg(II). The optimum adsorption parameters were determined based on the TLSB nanocomposite dosage, concentration of zinc subgroup ions, solution pH, adsorption temperature and adsorption time. The results revealed that the maximum adsorption capacity onto TLSB was 357.29 mg/g for Zn(II), 458.32 mg/g for Cd(II) and 208.12 mg/g for Hg(II). The adsorption kinetics were explained by the pseudo-second-order model, and the adsorption isotherm conformed to the Langmuir model, implying that the dominant chemical adsorption mechanism on TLSB is monolayer coverage. Thermodynamic studies suggested that the adsorption is spontaneous and endothermic. Desorption and regeneration experiments revealed that TLSB could be desorbed with HCl to recover Zn(II) and Cd(II) and with HNO3 to recover Hg(II) after several consecutive adsorption/desorption cycles. The adsorption mechanism was investigated through FTIR, EDX and SEM, which demonstrated that the introduction of thiol groups improved the adsorption capacity. All of these results suggested that TLSB is an eco-friendly and sustainable adsorbent for the extraction of Zn(II), Cd(II) and Hg(II) ions in aqueous media.


Author(s):  
Yahui Zhou ◽  
Shaobo Liu ◽  
Yunguo Liu ◽  
Xiaofei Tan ◽  
Ni Liu ◽  
...  

The occurrence of environmental endocrine disrupting chemicals (EDCs) in aquatic environments has caused extensive concern. Graphene-like magnetic sawdust biochar was synthesized using potassium ferrate (K2FeO4) to make activated sawdust biochar and applied for the removal of 17-estradiol (E2). The characterization showed that the surface morphology of five graphene-like magnetic sawdust biochars prepared with different preparation conditions were quite different. The specific surface area and pore structure increased with the increment of K2FeO4 addition. The results have shown that graphene-like magnetic sawdust biochar (1:1/900 °C) had the best removal on E2. The experimental results indicated that pseudo-first-order kinetic model and the Langmuir model could describe the adsorption process well, in which the equilibrium adsorption capacity (qe,1) of 1:1/900 °C were 59.18 mg·g−1 obtained from pseudo-first-order kinetic model and the maximum adsorption capacity (qmax) of 1:1/900 °C were 133.45 mg·g−1 obtained from Langmuir model at 298K. At the same time, lower temperatures, the presence of humic acid (HA), and the presence of NaCl could be regulated to change the adsorption reaction in order to remove E2. Adsorption capacity was decreased with the increase of solution pH because pH value not only changed the surface charge of graphene-like magnetic sawdust biochar, but also affected the E2 in the water. The possible adsorption mechanism for E2 adsorption on graphene-like magnetic sawdust biochar was multifaceted, involving chemical adsorption and physical absorption, such as H-bonding, π-π interactions, micropore filling effects, and electrostatic interaction. To sum up, graphene-like magnetic sawdust biochar was found to be a promising absorbent for E2 removal from water.


Sign in / Sign up

Export Citation Format

Share Document