The highest inhibition coefficient of phenol biodegradation using an acclimated mixed culture

2015 ◽  
Vol 73 (5) ◽  
pp. 1033-1040 ◽  
Author(s):  
Mojtaba Mohseni ◽  
Payman Sharifi Abdar ◽  
S. Mehdi Borghei

In this study a membrane biological reactor (MBR) was operated at 25 ± 1 °C and pH = 7.5 ± 0.5 to treat synthetic wastewater containing high phenol concentrations. Removal efficiencies of phenol and chemical oxygen demand (COD) were evaluated at four various hydraulic retention times (HRTs) of 24, 12, 8, and 4 hours. The removal rate of phenol (5.51 kg-Phenol kg-VSS−1 d−1), observed at HRT of 4 h, was the highest phenol degradation rate in the literature. According to COD tests, there were no significant organic matter in the effluent, and phenol was degraded completely by mixed culture. Substrate inhibition was calculated from experimental growth parameters using the Haldane, Yano, and Edward equations. The results show that the Haldane equation is fitted to the experimental data in an excellent manner. Kinetic parameters were derived by nonlinear regression with a correlation coefficient (R2) of 0.974. The values for Haldane constants μmax, Ks, and Ki were 0.3085 h−1, 416 mg L−1 and 1,886 mg L−1, respectively. The Ki value is the highest value obtained for mixed cultures degrading phenol under batch conditions.

2019 ◽  
Vol 80 (4) ◽  
pp. 737-746
Author(s):  
Rishi Gurjar ◽  
Akshay D. Shende ◽  
Girish R. Pophali

Abstract Studies on laboratory-scale submerged aerobic fixed film reactor (SAFF) packed with synthetic media having specific surface area of 165 m2/m3 with a void volume of 89% were carried out to assess its performance under various organic loading rates (OLR) and hydraulic retention times (HRT). Synthetic wastewater having chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of 400 ± 10% and 210 ± 10% mg/L respectively was fed and the reactor was subjected to OLRs ranging from 0.37 to 1.26 kg COD/m3.d. It was observed that steady sloughing of biofilm occurs within the SAFF reactor all the times and average concentration of sloughed biomass in the effluent was 26 mg/L. The COD and BOD removal efficiencies varied between 85 and 89% and 86 to 94%, respectively. The kinetic studies demonstrated that SAFF reactor followed Stover–Kincannon and Grau models, with high correlation coefficients (R2) of 0.9977 and 0.9916, respectively. Thus, the values of kinetic coefficients such as maximum substrate utilization rate, Umax = 64.1 g/(L.d); saturation value constant, KB = 72.31 g/(L.d) and Grau second-order substrate removal rate constant, Ks = 2.44 day−1 can be useful to develop and design large scale SAFF reactors. Finally, the study reveals that the optimum range for OLR can vary within 0.68–0.94 kg COD/m3.d.


2013 ◽  
Vol 67 (3) ◽  
pp. 587-593 ◽  
Author(s):  
L. Yerushalmi ◽  
M. Alimahmoodi ◽  
C. N. Mulligan

Simultaneous removal of carbon, nitrogen and phosphorus was examined along with reduced generation of biological sludge during the treatment of synthetic wastewater and hog waste by the BioCAST technology. This new multi-environment wastewater treatment technology contains both suspended and immobilized microorganisms, and benefits from the presence of aerobic, microaerophilic, anoxic and anaerobic conditions for the biological treatment of wastewater. The influent concentrations during the treatment of synthetic wastewater were 1,300–4,000 mg chemical oxygen demand (COD)/L, 42–115 mg total nitrogen (TN)/L, and 19–40 mg total phosphorus (TP)/L. The removal efficiencies reached 98.9, 98.3 and 94.1%, respectively, for carbon, TN and TP during 225 days of operation. The removal efficiencies of carbon and nitrogen showed a minimal dependence on the nitrogen-to-phosphorus (N/P) ratio, while the phosphorus removal efficiency showed a remarkable dependence on this parameter, increasing from 45 to 94.1% upon the increase of N/P ratio from 3 to 4.5. The increase of TN loading rate had a minimal impact on COD removal rate which remained around 1.7 kg/m3 d, while it contributed to increased TP removal efficiency. The treatment of hog waste with influent COD, TN and TP concentrations of 960–2,400, 143–235 and 25–57 mg/L, respectively, produced removal efficiencies up to 89.2, 69.2 and 47.6% for the three contaminants, despite the inhibitory effects of this waste towards biological activity. The treatment system produced low biomass yields with average values of 3.7 and 8.2% during the treatment of synthetic wastewater and hog waste, respectively.


2012 ◽  
Vol 66 (6) ◽  
pp. 1220-1224
Author(s):  
Suwasa Kantawanichkul ◽  
Walaya Boontakhum

In this study, the effect of dosing regime on nitrification in a subsurface vertical flow treatment wetland system was investigated. The experimental unit was composed of four circular concrete tanks (1 m diameter and 80 cm deep), filled with gravel (1–2 cm) and planted with Cyperus alternifolius L. Synthetic wastewater with average chemical oxygen demand (COD) and ammonia nitrogen of 1,151 and 339 mg/L was fed into each tank. Different feeding and resting periods were applied: continuous flow (tank 1), 4 hrs on and 4 hrs off (tank 2), 1 hr on and 3 hrs off (tank 3) and 15 minutes on and 3 hrs 45 minutes off (tank 4). All four tanks were under the same hydraulic loading rate of 5 cm/day. After 165 days the reduction of total Kjeldahl nitrogen and ammonia nitrogen and the increase of nitrate nitrogen were greatest in tank 4, which had the shortest feeding period, while the continuous flow produced the lowest results. Effluent tanks 2 and 3 experienced similar levels of nitrification, both higher than that of tank 1. Thus supporting the idea that rapid dosing periods provide better aerobic conditions resulting in enhanced nitrification within the bed. Tank 4 had the highest removal rates for COD, and the continuous flow had the lowest. Tank 2 also exhibited a higher COD removal rate than tank 3, demonstrating that short dosing periods provide better within-bed oxidation and therefore offer higher removal efficiency.


2013 ◽  
Vol 726-731 ◽  
pp. 301-304 ◽  
Author(s):  
Xi Pu He ◽  
Jie Liu ◽  
Hong Jie Liu ◽  
Sen Sheng Wang ◽  
Wen Hui Xu ◽  
...  

The influence on the growth and phenol biodegradation ofBacillussp. CDQ by three different conventional carbon sources were investigated. The results indicated that conventional carbon sources certainly affected the growth of strain CDQ and the biodegradation of phenol. Under the concentration of 1.5 to 3 g L-1, contrasting to the comparison, glucose improved the growth of theBacillussp. CDQ but inhibited the phenol biodegradation byBacillussp. CDQ. And the effect of inhibition increased with increasing glucose concentration. Below 1.5 g L-1, the rate of phenol removal increased with the amount of glucose added. Phenol biodegradation rate obviously decreased in the presence of sodium acetate. Lactose can significantly improve the rate of phenol biodegradation. However, no noticeable improvement on the removal rate of phenol was observed under different concentrations of lactose.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Jiguo Huang ◽  
Haitao Chen ◽  
Shuo Pang ◽  
Gang Liu ◽  
Huanyu Cui ◽  
...  

Bismuth oxide (Bi2O3) and its composites have good electrocatalytic performance. Quartz column is a good kind of catalyst carrier with the characteristics of high mechanical strength and good stability. A novel Bi-modified quartz column particle electrode (BQP) was prepared by the dipping-calcination method. The characterization results revealed that Bi2O3was successfully loaded on quartz column. The optimum preparation condition was calcining at 550°C for 4 h. Electrocatalytic performance was evaluated by the degradation of phenol and the results indicated that the triclinic phase of Bi2O3showed the best electrocatalytic property. Besides, when the dosage concentration of the particle electrode was 125 g/L and the electrolytic voltage was 12 V, the degradation rate of phenol (200 mg/L) reached the highest (94.25%), compared with 70.00% of that in two-dimensional (2D) system. In addition, the removal rate of chemical oxygen demand (COD) was 75.50%, compared with 53.30% of that in 2D system. The reusability and regeneration of BQP were investigated and the results were good. Mechanism of enhanced electrochemical oxidation by BQP was evaluated by the capture of hydroxyl radical.


Author(s):  
Benoît Marrot ◽  
Adrian Barrios-Martinez ◽  
Philippe Moulin ◽  
Nicolas Roche

Phenol biodegradation by mixed culture was studied in a membrane bioreactor (MBR) over a period of 285 days. Activated sludge was used as the MBR biomass, after controlled acclimation to high phenol concentrations. The MBR permeate flux was stabilized quickly (in a few hours) and always maintained above 90 L.h-1.m-2.bar-1. The acclimatized activated sludge allowed significant phenol degradation (95% average COD removal efficiency and greater than 99% phenol removal efficiency) without supplemental reagent addition. After sludge acclimatization, the Haldane kinetics model for a single substrate was used to obtain the maximum specific growth rate (µm = 0.438 h-1), the half saturation coefficient (Ks = 29.54 mg.L-1) and the substrate inhibition constant (Ki = 72.45 mg.L-1). Biodegradation experiments were conducted at different phenol concentrations (4.9 – 8.5 g.L-1 d-1). Although the phenol concentration was high, the Haldane model was still acceptable, and removal capacities were in agreement with literature. Excellent effluent quality was obtained regardless of the extremely short SRT (5 – 17 days). This work shows the potential of MBR for toxic chemical elimination, charged effluents treatment and process stability.


2020 ◽  
Vol 81 (10) ◽  
pp. 2260-2269
Author(s):  
Xiao Qing Lin ◽  
Wei Min Kong ◽  
Xiao Lin

Abstract This work aimed to degrade high-concentration p-nitrophenol (PNP) by Fenton oxidation. We studied various reaction parameters during Fenton oxidation, such as the iron dosage (as Fe2+), the initial concentration and temperature of PNP, and the dosage of hydrogen peroxide (H2O2), especially the influence of temperature on the PNP degradation rate and degree. Under the addition of the same molar ratio of H2O2/Fe2+ and H2O2 dosage according to the theoretical stoichiometry, the PNP degradation rate and the removal rate of total organic carbon (TOC) increased significantly with the increase in the initial PNP concentration. Moreover, the oxidative degradation effect was significantly affected by temperature. The increased reaction temperature not only significantly reduced the Fe2+ dosage, but also greatly promoted the removal rate of chemical oxygen demand (COD) and TOC, and improved the utilization efficiency of H2O2. For example, when the initial concentration of PNP was 4,000 mg·L−1, and the dosage of Fe2+ was 109 mg·L−1 (H2O2/Fe2+ = 200), the removal rates of COD and TOC at 85 °C reached 95% and 71% respectively. Both were higher than the 93% COD removal rate and 44% TOC removal rate when the dosage of Fe2+ was 1,092 mg·L−1 (H2O2/Fe2+ = 20) at room temperature.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jacqueline Wolf ◽  
Julia Koblitz ◽  
Andreas Albersmeier ◽  
Jörn Kalinowski ◽  
Bettina Siebers ◽  
...  

Present in many industrial effluents and as common degradation product of organic matter, phenol is a widespread compound which may cause serious environmental problems, due to its toxicity to animals and humans. Degradation of phenol from the environment by mesophilic bacteria has been studied extensively over the past decades, but only little is known about phenol biodegradation at high temperatures or low pH. In this work we studied phenol degradation in the thermoacidophilic archaeon Saccharolobus solfataricus P2 (basonym: Sulfolobus solfataricus) under extreme conditions (80°C, pH 3.5). We combined metabolomics and transcriptomics together with metabolic modeling to elucidate the organism’s response to growth with phenol as sole carbon source. Although S. solfataricus is able to utilize phenol for biomass production, the carbon source induces profound stress reactions, including genome rearrangement as well as a strong intracellular accumulation of polyamines. Furthermore, computational modeling revealed a 40% higher oxygen demand for substrate oxidation, compared to growth on glucose. However, only 16.5% of oxygen is used for oxidation of phenol to catechol, resulting in a less efficient integration of carbon into the biomass. Finally, our data underlines the importance of the phenol meta-degradation pathway in S. solfataricus and enables us to predict enzyme candidates involved in the degradation processes downstream of 2-hydroxymucconic acid.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3665
Author(s):  
Yujuan Wen ◽  
Chaofan Li ◽  
Xiaoming Song ◽  
Yuesuo Yang

This study focuses on the kinetics of a pure strain of bacterium Rhodococcus sp. SKC, isolated from phenol-contaminated soil, for the biodegradation of phenol as its sole carbon and energy source in aqueous medium. The kinetics of phenol biodegradation including the lag phase, the maximum phenol degradation rate, maximum growth rate (Rm) and maximum yield coefficient (Y) for each Si (initial phenol concentration, mg/L) were fitted using the Gompertz and Haldane models of substrate inhibition (R2 > 0.9904, RMSE < 0.00925). The values of these parameters at optimum conditions were μmax = 0.30 h−1, Ks = 36.40 mg/L, and Ki = 418.79 mg/L, and that means the inhibition concentration of phenol was 418.79 mg/L. By comparing with other strains of bacteria, Rhodococcus sp. SKC exhibited a high yield factor and tolerance towards phenol. This study demonstrates the potential application of Rhodococcus sp. SKC for the bioremediation of phenol contaminate.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2191-2194 ◽  
Author(s):  
M. Fujita ◽  
M. Ike ◽  
T. Kamiya

The metabolic pathway of the phenol degradation in Pseudomonasputida BH was amplified by introducing the recombinant plasmid containing catechol 2,3 oxygenase gene isolated fron the chromosome of BH. This strain could degrade phenol and grow much faster than the wild strain at the phenol concentration of 100mg/L. This strain seems to accelerate the phenol removal rate if it is applied to the treatment of wastewater containing phenol.


Sign in / Sign up

Export Citation Format

Share Document