scholarly journals Use of methyl esterified eggshell membrane for treatment of aqueous solutions contaminated with anionic sulfur dye

2017 ◽  
Vol 76 (10) ◽  
pp. 2638-2646 ◽  
Author(s):  
Hee-Jeong Choi

Abstract The present study assessed the adsorption of an anionic dye (sulfur blue) by methyl-esterified eggshell membrane (MESM), a low-cost and abundant material from waste. Adsorption kinetics were investigated using parameters such as pH, contact time, initial dye concentration, solution temperature, dosage of adsorbent, and particle size of adsorbent. After methyl esterification, the specific surface area significantly increased and the negative surface charge of the eggshell membrane changed to positive for all pH values, which increased the sulfur dye sorption capacity. The optimal conditions for sorption of sulfur dye onto MESM resulted in >98% removal and were as follows: <35 μm particle size, pH 8, 20 min contact time and 313 K temperature. In this respect, 0.68–0.73 dry weight mg/L sulfur dye was adsorbed per 1 mg/L MESM. The Langmuir adsorption capacity for sulfur dye was 187.6 mg/g. In addition, sulfur removal was spontaneous and uptake was endothermic. MESM is an inexpensive and effective adsorbent.

2015 ◽  
Vol 3 (3) ◽  
pp. 35-39
Author(s):  
Sannasi Palsan ◽  
Chai Swee Fern ◽  
Stephanie Bernardine ◽  
Lim Fan Shiang

Saraca thaipingensis or ‘Gapis’ tree, classified under the Fabaceae family is a native of Taiping; copious over Peninsular Malaysia and Southeast Asia. The withered and fallen dead leaves were collected from INTI International University’s garden walkway. To date, literature has yet to capture the use of S. thaipingensis tree parts or refuse as potential biosorbent material for the removal of heavy metals thus verifying the novelty of this study. Batch experiments were carried out with the leaf powder to study the effects of dosage, particle size and contact time towards Cr(VI) removal (%) at 1-100 mg/L. Results showed that Cr(VI) removal increased from 52.22% to 99.31% (p < 0.05) with increase in biosorbent dosage (0.005, 0.010, 0.015, 0.020, 0.025 and 0.050 g). The different particle size ranges tested were: 107-125, 126-150, 151-250, 251-500, and 501- 1000 ?m. Highest Cr(VI) removal of 99.53% was obtained with the 151-250 ?m particle size; further size decrease did not yield more removal (p > 0.05). The optimal Cr(VI) removal was recorded after 45 min (99.62%) and 90 min (99.76%) contact time (p > 0.05). Further characterization and optimization studies are being carried out to develop a novel, sustainable, low cost yet effective leaf powder based biosorbent material.


2000 ◽  
Vol 613 ◽  
Author(s):  
Uday Mahajan ◽  
Seung-Mahn Lee ◽  
Rajiv K. Singh

ABSTRACTIn this paper, results of studies on the addition of salt to a polishing slurry, in terms of its effect on slurry stability, SiO2 polishing rate and surface roughness of the polished surface are presented. Three salts, viz. LiCl, NaCl and KCl were selected, and three concentrations were tested. Polishing rate measurements using these slurries show that adding salt leads to increased removal rate without affecting surface roughness significantly. Based on these results, we can say that the agglomerates formed by adding salt to the slurry are fairly soft and easily broken during the polishing process. In addition, turbidity and particle size measurements show that significant coagulation of the particles in the slurry occurs only at the highest salt concentration, and is fastest for LiCl and NaCl, with KCl showing the slowest coagulation. From these results, it can be concluded that the enhancement in polish rate is due to increased contact at the wafer-pad-slurry interface, and not due to formation of larger agglomerated particles in the slurry. This is because of reduced electrostatic repulsion between these three surfaces, due to the screening of their negative surface charge by the metal ions in solution, resulting in a higher wear rate.


2018 ◽  
Vol 18 (4) ◽  
pp. 724
Author(s):  
Rahmah Hashim Abdullah ◽  
Amjed Mirza Oda ◽  
Alaa Rasheed Omran ◽  
Ameer Salem Mottaleb ◽  
Teeba Mudhefer Mubarakah

The performance sawdust as a low cost adsorbent to remove Direct Blue 85 (DB85) dye from aqueous solutions has been evaluated. The characteristic of sawdust analyzed by FTIR and XRD. The removal percentage of this dye was studied at different experimental conditions such as contact time, adsorbent dosage, particle size, temperature, and pH. The optimum removal percentage value was found at pH 2.Temperature also has a positive impact on adsorption, where the adsorption of this dye on the sawdust increased as the temperature increased. High values of correlation coefficient signified that the adsorption of (DB85) dye on the surface of sawdust obey Langmuir and Freundlich adsorption isotherms.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2755
Author(s):  
Hamed Ghazisaidi ◽  
Rafael A. Garcia ◽  
Honghi Tran ◽  
Runlin Yuan ◽  
D. Grant Allen

Synthetic polymers are widely used in the treatment of biosludge (waste activated sludge) to enhance its dewaterability. This paper discusses the results of a systematic study using hemoglobin (Hb) from animal blood and methylated hemoglobin (MeHb), a derivative in which a methyl group replaces the hydrogen carboxyl groups, to replace synthetic polymers to improve the dewatering efficiency of biosludge. With regular hemoglobin, no improvement in biosludge dewatering was found. With 10% of methylated hemoglobin per total solids content, however, the dry solids content of biosludge increased from 10.2 (±0.3) wt% to 15.0 (±1.0) wt%. Zeta potential measurements showed a decrease in the negative surface charge of the particles in biosludge from −34.3 (±3.2) mV to −19.0 (±2.1) mV after the treatment with methylated hemoglobin. This, along with an unchanged particle size distribution after conditioning, suggests that charge neutralization is likely the main cause of particle flocculation. With charges neutralized, the extracellular polymeric substances (EPS) around the biosludge flocs become loose, releasing the trapped water, thus increasing dewaterability.


Author(s):  
Olaniyi K Yusuff ◽  
Abdulrahman A. Mukadam ◽  
Adenike M.o Abdulraheem ◽  
Aanuoluwapo Akerele

The biosorption of Cr (III) ions from aqueous solutions by groundnut husk, a low-cost biosorbent was studied on a laboratory scale batch experiments. The effects of pH, contact time, particle size, biosorbent dosage and temperature on the adsorption of Cr (III) ions were investigated. Determination of Chromium ion concentration in solution was done using Atomic Absorption Spectrophotometer (AAS). The results show that the removal mechanism is predominantly by chemisorption and it is dependent on the physical and chemical characteristics of the biosorbent material. From the initial concentration of 0.5 mM, optimum Cr (III) ions removal was obtained at pH of 4, particle size of 0.15 nm, contact time of 180 minutes and biosorbent dosage of 50 mg, with the highest biosorption efficiency of 81.15 %. The biosorption process was best described by the BET adsorption isotherm with R2 value 0.9814 indicating multiplayer adsorption. Analysis of the experimental data revealed that the biosorption of Cr (III) ions from aqueous solution by groundnut husk is a spontaneous process with a ?Go value of -24.38 kJmol-1 at 298 K and follow the pseudo second order kinetics with a rate constant of 0.0151 min-1. The results indicate that groundnut husk can be employed as a low cost alternative to commercial adsorbents in the removal of Cr (III) ions from wastewater.


Author(s):  
Naima Ouazene ◽  
Mohamed Nasser Sahmoune

This paper aims to investigate the sorption of Astrazon yellow (A.Y.) onto sawdust (Aleppo pine tree), a forest waste as that acts as a low-cost adsorbent. In our experiments, the batch sorption is studied with respect to solute concentration, contact time, adsorbent dose, particle size and pH. The adsorption process attains equilibrium within 300 minutes. The extent of dye removal decreased with increasing particle size and increased with increasing contact time, adsorbent dose and pH. The equilibrium data were analysed by the Langmuir and Freundlich isotherms. The characteristic parameters for each isotherm were determined. By considering the experimental results and adsorption models applied in this study, it can be concluded that equilibrium data were represented well by the Langmuir isotherm equation. Maximum adsorption capacity calculated at 293K was 81.8 mg/g. Five kinetic models (pseudo-first order, pseudo-second order, fractional power, Elovich and intraparticle diffusion kinetic equations) were used to predict the adsorption rate constants. The kinetics of adsorption of the basic dye followed both Elovich and pseudo-second order kinetics, and intraparticle diffusion was not the sole rate-controlling step. The effective diffusion of Astrazon yellow in sawdust according to Boyd Model was 24.22 .10-12 m2/S. In order to reveal the adsorption characteristic of sawdust samples, SEM and FTIR spectra analyses were carried out. The results show that sawdust (Aleppo pine tree) can be an alternative low-cost adsorbent for removing cationic dyes from wastewater.


2019 ◽  
Vol 10 (1) ◽  
pp. 4728-4733

Most of the research on Diabetes has been focused on synthetic compound however the disease burden of Diabetes has not been reduced, natural chemistry has provided various safer options in different disease areas. Hesperidin (bioflavonoid) has shown good promise in anti-diabetes efficacy however its bioavailability is low. In this work, SLN of Hesperidin wasprepared, physiochemically evaluated and tested for anti-diabetic potential. Various drug- lipid ratio were tested along with other formulation parameter for fabrication of formulation and optimization. The optimized formulation has been shownuniform particle size with negative surface charge with more than 90% entrapment efficiency and 91.45% drug release. The formulation exhibited Korsmeyer-Peppas release kinetic. The optimize formulation showed 21 % increase in anti-diabetes activity of hesperidin.


2015 ◽  
Vol 17 (1) ◽  
pp. 186-197 ◽  

<div> <p>This work investigated the potential of calcined electrocoagulation sludge (CES) within metals hydroxide generated during removal of boron using Al electrode for adsorption of fluoride from aqueous solution. The effects of contact time, pH of the solution (2-10), stirrer speed (50-450 rpm), initial concentration (5-100<br /> mg l<sup>-1</sup>), adsorbent dose (1-4 mg l<sup>-1</sup>), solution temperature (293-333 K) and particle size (0.125-1000 &micro;m) on fluoride removal were investigated. All the experiments were carried out by batch mode. It was found that the maximum adsorption takes place within 2 h at pH 6.0. The adsorption removal increased with increase in the adsorbent dose, but decreased with increase in fluoride concentration. It was found that the adsorption removal decreases with increase in temperature, which showed that the adsorption process was exothermic in nature. The decrease in particle size increased fluoride removal efficiency. The maximum adsorption capacity (q<sub>m</sub>) increased from 45.5 to 124.6 mg g<sup>-1</sup> when the adsorbent dosage was adjusted to 1 instead of 4 g l<sup>-1</sup>. The Freundlich isotherm and Langmuir isotherm were used to fit the data of equilibrium experiments. The adsorption data fitted well into the linearly transformed Langmuir equation. The efficiency of CES to remove fluoride was found to be 99.99% at pH 6, contact time for 2 h, dose of 4 g l<sup>-1</sup>, when 25 mg l<sup>-1</sup> of fluoride was present in 100 ml of water. Comparison with literature reported values of q<sub>m</sub>, it was found that CES was an attractive adsorbent.</p> </div> <p>&nbsp;</p>


1970 ◽  
Vol 23 (02) ◽  
pp. 261-275 ◽  
Author(s):  
G Zbinden ◽  
J. N Mehrishi ◽  
S Tomlin

SummaryThe severity of platelet damage induced by hyper- and hypotonic NaCl solutions and freezing and thawing was assessed by microscopic evaluation and measuring inhibition of 5-HT uptake. The same techniques were used to quantitate the effects of aggregating agents. The positively charged macromolecules PS, Poly-L und Poly-O reduced the net negative surface charge as determined by microelectrophoresis, caused platelet aggregation and inhibited 5-HT uptake. The damaging effects of Poly-L and Poly-O were more severe and more closely related to concentration than that of PS. The negatively charged macromolecules Poly-IC and NaPS increased the anodic electrophoretic mobility. Poly-IC and heparin caused a low degree of platelet clumping and no inhibition of 5-HT uptake. NaPS produced severe platelet damage with extensive clumping and complete inhibition of 5-HT uptake. Na laurate had the same effect, but did not alter electrophoretic mobility. ADP caused concentration-dependent platelet aggregation and inhibition of 5-HT uptake. The effects of ADP and NaPS were compared in agitated and non-agitated platelet samples containing identical concentrations of the 2 compounds. Agitation was found to increase the degree of platelet clumping and to reduce 5-HT uptake.


Author(s):  
Seroor Atalah Khaleefa Alia ◽  
Dr. Mohammed Ibrahimb ◽  
Hussein Ali Hussein

Adsorption is most commonly applied process for the removal of pollutants such as dyes and heavy metals ions from wastewater. The present work talks about preparing graphenic material attached sand grains called graphene sand composite (GSC) by using ordinary sugar as a carbon source. Physical morphology and chemical composition of GSC was examined by using (FTIR, SEM, EDAX and XRD). Efficiency of GSC in the adsorption of organic dyes from water was investigated using reactive green dye with different parameters such as (ph, temperature, contact time and dose). Adsorption isotherm was also studied and the results showed that the maximum adsorption capacity of dye is 28.98 mg/g. This fast, low-cost process can be used to manufacture commercial filters to treat contaminated water using appropriate engineering designs.


Sign in / Sign up

Export Citation Format

Share Document