scholarly journals Microalgae population dynamics growth with AnMBR effluent: effect of light and phosphorus concentration

2018 ◽  
Vol 77 (11) ◽  
pp. 2566-2577 ◽  
Author(s):  
P. Sanchis-Perucho ◽  
F. Duran ◽  
R. Barat ◽  
M. Pachés ◽  
D. Aguado

Abstract The aim of this study was to evaluate the effect of light intensity and phosphorus concentration on biomass growth and nutrient removal in a microalgae culture and their effect on their competition. The photobioreactor was continuously fed with the effluent from an anaerobic membrane bioreactor pilot plant treating real wastewater. Four experimental periods were carried out at different light intensities (36 and 52 μmol s−1 m−2) and phosphorus concentrations (around 6 and 15 mgP L−1). Four green algae – Scenedesmus, Chlorella, Monoraphidium and Chlamydomonas– and cyanobacterium were detected and quantified along whole experimental period. Chlorella was the dominant species when light intensity was at the lower level tested, and was competitively displaced by a mixed culture of Scenedesmus and Monoraphidium when light was increased. When phosphorus concentration in the photobioreactor was raised up to 15 mgP L−1, a growth of cyanobacterium became the dominant species in the culture. The highest nutrient removal efficiency (around 58.4 ± 15.8% and 96.1 ± 16.5% of nitrogen and phosphorus, respectively) was achieved at 52 μmol s−1 m−2 of light intensity and 6.02 mgP L−1 of phosphorus concentration, reaching about 674 ± 86 mg L−1 of volatile suspended solids. The results obtained reveal how the light intensity supplied and the phosphorus concentration available are relevant operational factors that determine the microalgae species that is able to predominate in a culture. Moreover, changes in microalgae predominance can be induced by changes in the growth medium produced by the own predominant species.

2006 ◽  
Vol 53 (9) ◽  
pp. 169-175 ◽  
Author(s):  
K. Hamada ◽  
T. Kuba ◽  
V. Torrico ◽  
M. Okazaki ◽  
T. Kusuda

A shortage of organic substances (COD) may cause problems for biological nutrient removal, that is, lower influent COD concentration leads to lower nutrient removal rates. Biological phosphorus removal and denitrification are reactions in which COD is indispensable. As for biological simultaneous nitrogen and phosphorus removal systems, a competition problem of COD utilisation between polyphosphate accumulating organisms (PAOs) and non-polyphosphate-accumulating denitrifiers is not avoided. From the viewpoint of effective utilisation of limited influent COD, denitrifying phosphorus-removing organisms (DN-PAOs) can be effective. In this study, DN-PAOs activities in modified UCT (pre-denitrification process) and DEPHANOX (post-denitrification ptocess) wastewater treatments were compared. In conclusion, the post-denitrification systems can use influent COD more effectively and have higher nutrient removal efficiencies than the conventional pre-denitrification systems.


2016 ◽  
Vol 14 (4) ◽  
pp. 600-608
Author(s):  
Fuyi Du ◽  
Qingjie Xie ◽  
Longxiang Fang ◽  
Hang Su

Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification–denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4+-N (57.74–70.52%), total nitrogen (43.69–54.50%), and total phosphorus (42.50–55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.


2010 ◽  
Vol 70 (3 suppl) ◽  
pp. 825-829 ◽  
Author(s):  
T Matsumura-Tundisi ◽  
JG Tundisi ◽  
AP Luzia ◽  
RM Degani

An unusual bloom of Ceratium furcoides is reported for a station of the Taquacetuba compartment of the Billings Reservoir. The appearance of this bloom is attributed to the mixing and turbulence of the water column that removed Ceratium cysts from the surface of the sediment and promoted conditions for the growth of this species in the region of mixing. Cold fronts approaching the Billings Reservoir are probably the cause of the mixing and bloom. Also turbulence induced by wind increased phosphorus concentration in the water column. Ceratium furcoides was the dominant species at station 1 where the nutrient concentrations of nitrogen and phosphorus were high. Ceratium spp. blooms may be a problem for water treatment and massive mortality can affect the dissolved oxygen of the water producing fish kill.


2005 ◽  
pp. 18-23
Author(s):  
Dénes Gál ◽  
Pál Szabó ◽  
Ferenc Pekár ◽  
Éva Kerepeczki ◽  
László Váradi

A combined intensive-extensive fishpond system developed for the purification and re-use of intensive fishpond effluent water was studied during a three-year experimental period. The investigated pond system consists of five small-size intensive culture ponds of 1 ha total water surface area with 1.5 m water depth and a 20 ha extensive culture pond with 1.0 m average water depth. The water was recirculated between the intensive and extensive ponds with around 60 days retention time in the extensive treatment pond.Carbon, nitrogen and phosphorus budget and water purifying capacity were described and evaluated by means of regular measurements of nutrient concentrations in the water and sediment. During the three-year test period, 81.5% of organic carbon, 54.7% of nitrogen and 72.2% of phosphorus were retained by the system as a percentage of the total input of each nutrient. A significant amount of the total nitrogen input was removed by the harvested fish, which was much higher than in traditional fishponds or intensive fish culture systems. The efficiency of nutrient removal is clearly indicated by the 27.3% nitrogen assimilation.Only a small percentage of the total nutrient input was discharged into the environment during fish harvest, which was 9.0% for organic carbon, 13.2% for nitrogen and 12.1% for phosphorus. The combination of intensive and extensive fishponds with water recirculation resulted in significant reduction of nutrient discharge into the surrounding aquatic environment, primarily due to the high nutrient processing and retention capacity of the extensive fishpond ecosystem.


2012 ◽  
Vol 66 (4) ◽  
pp. 695-703 ◽  
Author(s):  
Xia Yu ◽  
Thomas König ◽  
Zhang Qi ◽  
Gao Yongsheng

This paper assesses the nitrogen and phosphorus removal efficiency of seven plant species (Schoenoplectus lacustris, Vetiveria zizanioides, Acorus calamus, Canna indica, Zizania latifolia, Phragmites communis, and Iris pseudacorus) commonly used in constructed wetland systems in southern China. The investigation considers two aspects that are relevant to determine nutrient removal efficiency: plants’ biomass production and nutrient content in water effluent. Both assessments are correlated with each other. Three different hydraulic retention times with different nutrient loads have been applied in this ex-situ trial. The plants’ biomass production correlates positively with the effluent's nutrient removal efficiency. Six out of seven species reviewed produce more biomass above ground than below ground (average: 67% of dried biomass in aerial part); only I. pseudacorus produces more biomass below ground. S. lacustris, V. zizanioides, I. pseudacorus, and C. indica have performed best in terms of nutrient removal efficiency (65.6–90.2% for nitrogen; 67.7–84.6% for phosphorus).


Author(s):  
C. S. Bricker ◽  
S. R. Barnum ◽  
B. Huang ◽  
J. G. Jaworskl

Cyanobacteria are Gram negative prokaryotes that are capable of oxygenic photosynthesis. Although there are many similarities between eukaryotes and cyanobacteria in electron transfer and phosphorylation during photosynthesis, there are two features of the photosynthetic apparatus in cyanobacteria which distinguishes them from plants. Cyanobacteria contain phycobiliproteins organized in phycobilisomes on the surface of photosynthetic membrane. Another difference is in the organization of the photosynthetic membranes. Instead of stacked thylakolds within a chloroplast envelope membrane, as seen In eukaryotes, IntracytopIasmlc membranes generally are arranged in three to six concentric layers. Environmental factors such as temperature, nutrition and light fluency can significantly affect the physiology and morphology of cells. The effect of light Intensity shifts on the ultrastructure of Internal membrane in Anabaena variabilis grown under controlled environmental conditions was examined. Since a major constituent of cyanobacterial thylakolds are lipids, the fatty acid content also was measured and correlated with uItrastructural changes. The regulation of fatty acid synthesis in cyanobacteria ultimately can be studied if the fatty acid content can be manipulated.


2019 ◽  
Vol 64 (11) ◽  
pp. 1007-1014
Author(s):  
Tong XU ◽  
◽  
Jia-Hui ZHANG ◽  
Zhao-Ying LIU ◽  
Xuan LI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document