scholarly journals Deciphering the biodegradation of petroleum hydrocarbons using FTIR spectroscopy: application to a contaminated site

2019 ◽  
Vol 80 (7) ◽  
pp. 1315-1325 ◽  
Author(s):  
Mingxing Yang ◽  
Zhendong Cao ◽  
Yue Zhang ◽  
Honghan Wu

Abstract The chemical composition of groundwater in a petroleum-contaminated site is determined by the present functional groups and these play a vital role in a feasibility remediation technique. Based on the in situ investigation of a contaminated shallow groundwater in an oilfield, Fourier transform infrared (FTIR) spectroscopy associated with chemometric treatments, principal component analysis (PCA), and simple-to-use interactive self-modeling mixture analysis (SIMPLISMA), were used to decipher the biodegradation process by analyzing the conversion of functional groups. Environmental factors that can influence microbial metabolism were also evaluated for a comprehensive explanation. FTIR spectroscopy and PCA results showed that the contamination in the study area can be divided into three parts based on FTIR spectra: (1) regular contamination plume distribution and biodegradation level to fresh oil, (2) moderate biodegradation area, and (3) intensive biodegradation area. FTIR spectra further revealed the present functional groups as aliphatic, aromatic, and polar family compounds. SIMPLISMA was used to discuss the degree of biodegradation along the flow path quantitatively and qualitatively and elucidated that the aliphatic and aromatic compounds were mainly metabolized into polar compounds with nitrogen, sulfur, and oxygen via microbes. During metabolism, microbial indices, such as the Shannon–Weaver, Simpson, and Pielou indices, indicated that microbial diversity did not greatly change; hence, hydrocarbons were constantly consumed to feed dominant microbes. Dissolved oxygen concentrations decreased from 4.58 ± 0.31 mg/L (in monitoring well Z1) to 3.21 ± 0.26 mg/L (in monitoring well Z16) and then became constant in the down-gradient area, demonstrating that aerobic biodegradation was the dominant process at the up-gradient plume. Results were in accordance with the oxidation index, which continuously increased from 0.028 ± 0.013 (in monitoring well Z1) to 0.669 ± 0.047 (in monitoring well Z10), showing that oxygen was consumed along the flow path. Similarly, concentration changes in Fe2+, Mn2+, and SO42− proved that the down-gradient area was in reduction condition.

2018 ◽  
Vol 10 (11) ◽  
pp. 4112 ◽  
Author(s):  
Alessandra Durazzo ◽  
Johannes Kiefer ◽  
Massimo Lucarini ◽  
Emanuela Camilli ◽  
Stefania Marconi ◽  
...  

Italian cuisine and its traditional recipes experience an ever-increasing popularity around the world. The “Integrated Approach” is the key to modern food research and the innovative challenge for analyzing and modeling agro-food systems in their totality. The present study aims at applying and evaluating Fourier Transformed Infrared (FTIR) spectroscopy for the analysis of complex food matrices and food preparations. Nine traditional Italian recipes, including First courses, One-dish meals, Side courses, and Desserts, were selected and experimentally prepared. Prior to their analysis via FTIR spectroscopy, the samples were homogenized and lyophilized. The IR spectroscopic characterization and the assignment of the main bands was carried out. Numerous peaks, which correspond to functional groups and modes of vibration of the individual components, were highlighted. The spectra are affected by both the preparation procedures, the cooking methods, and the cooking time. The qualitative analysis of the major functional groups can serve as a basis for a discrimination of the products and the investigation of fraud. For this purpose, the FTIR spectra were evaluated using Principal Component Analysis (PCA). Our results show how the utilization of vibrational spectroscopy combined with a well-established chemometric data analysis method represents a potentially powerful tool in research linked to the food sector and beyond. This study is a first step towards the development of new indicators of food quality.


Food Research ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 184-190
Author(s):  
A.B. Riyanta ◽  
S. Riyanto ◽  
E. Lukitaningsih ◽  
Abdul Rohman

Candlenut oil (CDO) is the target of adulteration with other plant oils to get economical profits, therefore, reliable analytical techniques should be developed. Based on the principal component analysis (PCA), grape seed oil (GSO) has the close similarity with CDO. Therefore, this study was intended to make modelling in the authentication analysis of CDO from GSO using Fourier transformed infrared (FTIR) spectroscopy in combination with chemometrics of partial least square calibration (PLSR) and discriminant analysis (DA). FTIR spectra of CDO, GSO and its binary mixtures were subjected to FTIR spectral measurement at wavenumbers of 4000-650 cm-1 , and its absorbances were used for modelling of PLSR and DA. FTIR spectra were also subjected to pre-processing including Savitzy-Golay derivatization. The optimization results showed that FTIR spectra using second derivative at the combined wavenumbers of 3000-2800 and 1600-650 cm-1 offered the optimum models. The coefficient determination (R2 ) for the relationship between actual values and FTIR predicted values was 0.9996 and 0.9975 in calibration and internal validation (prediction) models, respectively. The errors in calibration and validation were relatively low, i.e. 0.84% and 2.19 %vol/vol, respectively. Using the same FTIR spectra, DA could discriminate pure CDO and that mixed with GSO at concentration range of 1-50%vol/vol. The combination of FTIR spectroscopy and chemometrics offered effective tools for the quantification and discrimination of CDO mixed with GSO with the main advantage of its simplicity and rapidity.


2020 ◽  
pp. 177-185
Author(s):  
Krzysztof Wójcicki

Introduction. Our study aimed to apply medium infrared (MIR/FTIR) spectroscopy to evaluate the quality of various sports supplements available in the Polish shops and gyms. Study objects and methods. The study objects included forty-eight sports supplements: whey (15 samples), branched-chain amino acids (12 samples), creatine (3 samples), mass gainers (6 samples), and pre-workouts (12 samples). First, we determined the protein quantity in individual whey supplements by the Kjeldahl method and then correlated the results with the measured FTIR spectra by chemometric methods. The principal component analysis (PCA) was used to distinguish the samples based on the measured spectra. The samples were grouped according to their chemical composition. Further, we correlated the spectra with the protein contents using the partial least squares (PLS) regression method and mathematic transformations of the FTIR spectral data. Results and discussion. The analysis of the regression models confirmed that we could use FTIR spectra to estimate the content of proteins in protein supplements. The best result was obtained in a spectrum region between 1160 and 2205 cm–1 and after the standard normal variate normalization. R2 for the calibration and validation models reached 0.85 and 0.76, respectively, meaning that the models had a good capability to predict protein content in whey supplements. The RMSE for the calibration and validation models was low (2.7% and 3.7%, respectively). Conclusion. Finally, we proved that the FTIR spectra applied together with the chemometric analysis could be used to quickly evaluate the studied products.


2020 ◽  
Vol 21 (1) ◽  
pp. 128
Author(s):  
Eti Rohaeti ◽  
Fadila Karunina ◽  
Mohamad Rafi

Syzygium polyanthum, known as salam in Indonesia, which is rich in phenolics compounds with high antioxidant activity. In this study, we performed the determination of total phenolics and characterization of the antioxidant activity of S. polyanthum leaves extracts using the FTIR-based fingerprinting technique. The extracts of S. polyanthum in water, ethanol, and ethanol-water (30, 50, and 70%) were measured for their antioxidant activity, total phenolics, and FTIR spectra. The antioxidant activity of S. polyanthum extract with different solvent extraction showed the highest antioxidant activity and total phenolic content is 70% and 50% ethanolic extract, respectively. The FTIR spectrum of each extract showed identical FTIR spectra patterns. According to their different solvent extraction, S. polyanthum extract could be grouped based on FTIR spectra using principal component analysis. Correlation between the functional group in the FTIR spectra with IC50 from S. polyanthum extract was analyzed using partial least square (PLS). The PLS analysis results showed that O–H, C–H sp3, C=O, C=C, C-O, and C–H aromatic are the main functional groups contributed to the antioxidant activity of S. polyanthum extract. FTIR-based fingerprinting combined with chemometrics could be used to classify different extracts of S. polyanthum and predicted functional groups having a significant contribution to antioxidant activity.


2018 ◽  
Vol 2 (1) ◽  
pp. 7-12
Author(s):  
Ewelina Michalczyk ◽  
Rafał Kurczab

The main aim of this study was to investigate the use of Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FTIR) and selected chemometric methods to classify eggs in terms of the laying hen farming method, as well as to identify changes in the individual egg compositions during storage. In total, 50 eggs were used for the study; 10 eggs per classes: 0, 1, 2, 3 and rural. Eggs were stored by 29 days period, which was divided on the 10 measuring days in which one egg from each class was tested by recording two FTIR spectra for the shell, albumen and egg yolk. The chemometric analysis, including Hierarchical Cluster Analysis (HCA) and the Principal Component Analysis (PCA), was performed based on the recorded FTIR spectra. Changes in chemical composition during the experiment in individual egg elements were analyzed. Furthermore, by analyzing the graphs (HCA and PCA) obtained by the chemometric analysis, it was noted that the largest changes in the chemical composition of eggs occurred in the shell and yolk, while in the albumen it was less insignificant. The chemometric analysis of the recorded spectra also showed that combination of chemometric methods and FTIR spectroscopy can potentially be used to develop a non-destructive method for classifying eggs in terms of the hen culture method and to monitor of their freshness.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 183
Author(s):  
Ghiath Jnido ◽  
Gisela Ohms ◽  
Wolfgang Viöl

In the present work, the solution precursor plasma spray (SPPS) process was used to deposit zinc oxide (ZnO) coatings on wood surfaces using zinc nitrate solution as precursor to improve the hydrophobicity and the color stability of European beech wood under exposure to ultraviolet (UV) light. The surface morphology and topography of the wood samples and the coatings were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The formation of ZnO was detected with the help of X-ray photoelectron spectroscopy (XPS) and by Fourier transform infrared (FTIR) spectroscopy. The FTIR spectra of the coated samples showed the typical Zn–O band at 445 cm−1. According to the XPS analysis, the coatings consist of two different Zn-containing species: ZnO and Zn(OH)2. Variation of the deposition parameters showed that the most significant parameters affecting the microstructure of the coating were the solution concentration, the deposition scan speed, and carrier gas flow rate. The wettability behaviors of the coated wood were evaluated by measuring the water contact angle (WCA). The coatings that completely covered the wood substrates showed hydrophobic behaviors. UV-protection of wood surfaces after an artificial UV light irradiation was evaluated by color measurements and FTIR spectroscopy. The ZnO-coated wood surfaces were more resistant to color change during UV radiation exposure. The total color change decreased up to 60%. Additionally, the FTIR spectra showed that the wood surfaces coated with ZnO had more stability. The carbonyl groups formation and C=C-bonds consumption were significantly lower.


2021 ◽  
Vol 11 (2) ◽  
pp. 621
Author(s):  
Silvana Alfei ◽  
Anna Maria Schito ◽  
Guendalina Zuccari

In the recent years, plastic-based shopping bags have become irregular and progressively replaced by compostable ones. To be marketed, these “new plastics” must possess suitable requirements verified by specific bodies, which grant the conformity mark, and the approved physicochemical properties are periodically verified. The fast, inexpensive, non-destructive, easy to use, and reproducible Fourier-Transform infrared (FTIR) spectroscopy is a technique routinely applied to perform analysis in various industrial sectors. To get reliable information from spectral data, chemometric methods, such as Principal Component Analysis (PCA), are commonly suggested. In this context, PCA was herein performed on 4, 5, and 21 × 3251 matrices, collecting the FTIR data from regular and irregular shopping bags, including three freshly extruded films from the Italian industry MecPlast, to predict their compliance with legislation. The results allowed us to unequivocally achieve such information and to classify the bags as suitable for containing fresh food in bulk or only for transport. A self-validated linear model was developed capable to estimate, by acquiring a single FTIR spectrum if, after the productive process, the content of renewable poly-lactic-acid (PLA) in a new produced film respect the expectations. Surprisingly, our findings established that among the grocery bags available on the market, irregular plastic-based shopping bags continue to survive.


Author(s):  
Maria Ioana MORAR ◽  
Florinela FETEA ◽  
Ancuta Mihaela ROTAR ◽  
Melinda NAGY ◽  
Cristina Anamaria SEMENIUC

Four essential oils isolated from dried leaves of parsley, lovage, basil, and thyme were investigated by FTIR spectroscopy. FTIR spectra revealed characteristic key bands for the main compounds of tested essential oils.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1349
Author(s):  
Tutik Setianingsih ◽  
Bambang Susilo ◽  
Siti Mutrofin ◽  
Bambang Ismuyanto ◽  
Andreas Novan Endaryana ◽  
...  

In this research work, MFe2O4/CNS was prepared using the hydrothermal–microwave method. The influence of cations (M) toward functional groups of composites and their performance in pesticide degradation were studied. Rice husk was pyrolyzed hydrothermally (200 °C, 6 h) and by microwave (800 W, 40 min). Each product was mixed with MCl2 (Zn, Ni, Mn), FeCl3, KOH, and water, and calcined (600 °C, 15 min) to obtain a composite. Characterization by XRD confirmed the MFe2O4/CNS structure. The FTIR spectra of the composites showed different band sharpness related to C-O and M-O. A mixture of dried paddy farm soil, composite, BPMC (buthylphenylmethyl carbamate) pesticide solution (0.25%), and H2O2 solution (0.15%) was kept under dark conditions for 48 h. The solution above the soil was filtered and measured with a UV-Vis spectrophotometer at 217 nm. Applications without the composite and composite–H2O2 were also conducted. The results reveal that dark BPMC degradation with the composite was 7.5 times larger than that without the composite, and 2.9 times larger than that without the composite–H2O2. There were no significantly different FTIR spectra of the soil, soil–BPMC, soil–BPMC-H2O2, and soil–BPMC-H2O2 composite and no significantly different X-ray diffractograms between the soil after drying and soil after application for pesticide degradation using the composite.


Sign in / Sign up

Export Citation Format

Share Document