scholarly journals Enhanced removal of ibuprofen by heterogeneous photo-Fenton like process over sludge based Fe3O4-MnO2 catalysts

Author(s):  
Yanjun Liu ◽  
Xiaoqian Zheng ◽  
Shufen Zhang ◽  
Shujuan Sun

Abstract Heterogeneous photo-Fenton like catalysts with low cost, little hazardous, high effective and facile separation from aqueous solution were highly desirable. In this study, sludge-based catalysts combining nano Fe3O4-MnO2 and sludge activated carbon were successfully synthesized by high-temperature calcination method and then characterized. These synthetic materials were applied to remove ibuprofen in the heterogeneous photo-Fenton process. The preparation conditions of sludge-based catalysts optimized by orthogonal experiments were 2.0 M of ZnCl2, a temperature of 500 °C, a pyrolysis time of 60 min, and a sludge ratio: Fe3O4-MnO2 of 25:2. In batch experiments, the optimal experimental conditions were determined as catalyst dosage of 0.4 g·L−1, hydrogen peroxide concentration of 3.0 g·L−1, pH value of 3.3, and contact time of 2.5 h. The degradation rate Sludge/Fe3O4-MnO2 catalyst to ibuprofen is up to 95%. The removal process of ibuprofen fitted the pseudo-second-order kinetic model, and the photocatalytic degradation process was the main factor controlling the reaction rate. The catalytic mechanism was proposed according to the FTIR analysis and mass spectrometry product analysis, it was mainly attributed to the interaction between hydroxyl groups and benzene rings.

2019 ◽  
Vol 20 (1) ◽  
pp. 202-215 ◽  
Author(s):  
Thi Thuong Nguyen ◽  
Thi Ngoc Thu Nguyen ◽  
Long Giang Bach ◽  
Duy Trinh Nguyen ◽  
Thi Phuong Quynh Bui

The worm-like exfoliated graphite (EG) based adsorbents prepared from low-cost natural graphite flakes via facile synthesis processes have been found to be efficient adsorbents when it comes to removing Pb (II) from aqueous solution. EG was fabricated by chemical intercalation and microwave assisted exfoliation. Furthermore, the magnetic exfoliated graphite (MEG) was developed by incorporating CoFe2O4 particles into the EG layers using the citric acid based sol-gel technique. Adsorption behaviour of Pb (II) on the as-prepared adsorbents was investigated by taking several experimental conditions into consideration such as contact time, initial concentration, adsorbent dosage, and pH value. The results with initial neutral pH indicated that the adsorption isotherms for Pb (II) on the EG and MEG were well consistent with the Langmuir isotherm model revealing the maximum adsorption capacity of 106 mg/g and 68 mg/g for EG and MEG, respectively. The adsorption kinetics of Pb (II) was found to adhere to the pseudo-second-order kinetic model. The chemical interaction between ? electrons on graphite sheets and Pb (II) ions was suggested to play an essential role in the adsorption mechanism. The introduction of magnetic CoFe2O4 to the EG was found to induce the shift of optimal pH value to a more basic condition. The characterization of the adsorbents was performed using relevant analysis techniques such as Scanning electron microscope (SEM), X–ray powder diffraction (XRD), vibrating-sample magnetometer (VSM), and Fourier-transform infrared (FTIR). The results of this work suggest a high possibility for application of the as-prepared modified graphite to remove hazardous substances in practical wastewater treatment systems. ABSTRAK:  Penyerap Pengelupas Grafit (EG) yang berupa seperti cacing dihasilkan dari grafit semulajadi yang murah melalui proses sintesis serpihan, ia juga merupakan penyerap yang bagus dalam mengasingkan Pb (II) daripada larutan akues. EG direka dengan tindak balas interkalasi kimia dan pengelupasan melalui gelombang mikro. Tambahan, pengelupas grafit magnet (MEG) telah dihasilkan dengan memasukkan zarah CoFe2O4 ke dalam lapisan EG menggunakan teknik sol-gel yang berasaskan asid sitrik. Tindak balas penyerapan Pb (II) pada penyerap yang disiapkan ini, dikaji dengan mengambil kira beberapa keadaan eksperimen seperti waktu disentuh, konsentrasi awal, dos penyerap dan nilai pH.  Hasil keputusan pH neutral awal menunjukkan bahawa isoterm penyerapan bagi Pb (II) pada EG dan MEG adalah konsisten dengan model isoterm Langmuir. Ini menunjukkan kapasiti penyerapan maksimum 106 mg/g dan 68 mg/g bagi EG dan MEG, masing-masing. Penyerapan kinetik Pb (II) didapati mematuhi model kinetik pesudo-order-kedua. Interaksi kimia antara elektron ? pada helaian grafit dan ion Pb (II) memainkan peranan penting dalam mekanisme penyerapan. Pengenalan magnet CoFe2O4 kepada EG didapati telah mengubah nilai pH optimum kepada keadaan asal. Pengelasan penyerapan dilakukan menggunakan teknik analisis yang relevan seperti Mikroskop Elektron Pengimbasan (SEM), Difraksi Serbuk sinar-X (XRD), Magnetometer Sampel-Getaran (VSM) dan Inframerah Perubahan-Fourier (FTIR). Hasil kerja ini mencadangkan kemungkinan besar bagi penggunaan grafit ubah suai yang disediakan bagi membuang bahan berbahaya dalam sistem rawatan air sisa praktikal.


2013 ◽  
Vol 67 (11) ◽  
pp. 2560-2567 ◽  
Author(s):  
Fan Yang ◽  
Xiaojie Song ◽  
Lifeng Yan

Cationic paper was prepared by reaction of paper with 2,3-epoxypropyltrimethylammonium chloride in aqueous suspension, and tested as low-cost adsorbent for wastewater treatment. The experimental results revealed that anionic dyes (Acid Orange 7, Acid Red 18, and Acid Blue 92) were adsorbed on the cationic paper nicely. The maximum amount of dye Acid Orange 7 adsorbed on cationic paper was 337.2 mg/g in experimental conditions. The effects of initial dye concentration, temperature, and initial pH of dye solution on adsorption capacity of cationic paper were studied. The pseudo-first-order and pseudo-second-order kinetic models were applied to describe the kinetic data. The Freundlich and Langmuir adsorption models were used to describe adsorption equilibrium. The thermodynamic data indicated that the adsorption process of dye on cationic paper occurred spontaneously.


2019 ◽  
Vol 79 (8) ◽  
pp. 1561-1570
Author(s):  
Wei Chen ◽  
Fengting Chen ◽  
Bin Ji ◽  
Lin Zhu ◽  
Hongjiao Song

Abstract The adsorption behavior and the underlying mechanism of methylene blue (MB) sorption on biochars prepared from different feedstocks at 500 °C were evaluated. The biochar feedstocks included Magnolia grandiflora Linn. leaves biochar (MBC), pomelo (Citrus grandis) peel biochar (PBC) and badam shell biochar (BBC). The results of characterizing and analyzing the samples showed that different biochars had different effects on the adsorption of MB. It could be found that MBC had the best adsorption effect on MB due to its largest average pore diameter of 5.55 nm determined by Brunauer-Emmett-Teller analysis. Under the optimal conditions, the maximum adsorption capacities of BBC, PBC and MBC were 29.7, 85.15 and 99.3 mg/g, respectively. The results showed that the amount of adsorption was affected by the pH value. The maximum adsorption capacity of MBC was 46.99 mg/g when it was at pH of 3, whereas for the same experimental conditions the maximum adsorption capacity of BBC and PBC was 25.29 mg/g at pH of 11 and 36.08 mg/g at pH of 7, respectively. Therefore, MBC was found to be a most efficient low-cost adsorbentl for dye wastewater treatment compared with BBC and PBC, and it had the best removal effect under acidic conditions.


2019 ◽  
Vol 80 (10) ◽  
pp. 1919-1930
Author(s):  
Junwo Zhou ◽  
Zhen Zhou ◽  
Yong Gao ◽  
Tingting Li ◽  
Manying Zhang ◽  
...  

Abstract In this work, particles of activated carbon supported by Fe-N-TiO2 (Fe-N-TiO2/AC) were synthesized and used as the three-dimensional (3D) particle electrode for folic acid wastewater treatment in the 3D electrolysis and photocatalysis coupling process. The structure, morphology, and physical and electrochemical properties of the Fe-N-TiO2/AC particles were characterized, and the results showed that Fe-N-TiO2 was bound on the surface of AC particles by chemical attachment, and the Fe-N-TiO2/AC particles had better capability of adsorption and charge transfer as compared with the TiO2/AC particles. The effects of key operating parameters in the reaction process, including the current density (optimum 0.6 mA/cm2), aeration (optimum 5 L/min), pH value (optimum 5) and the ratio of Fe-N-TiO2/AC particles to cellulose acetate film coating AC particles (optimum 4:1), were optimized regarding the total oxygen carbon (TOC) removal. Under the optimum conditions, TOC removal from folic acid wastewater reached 82.4% during 120 min photoelectrocatalysis. The kinetic analysis and mechanism study showed that the degradation process fitted to the second-order kinetic model better than to the first-order, and the system exhibited synergistic effects in inhibiting photogenic electron–hole recombination and improving electrolytic efficiency. At the same time, this system has the ability to overcome the interference of the strong ionic strength in folic acid wastewater.


2014 ◽  
Vol 79 (4) ◽  
pp. 495-508 ◽  
Author(s):  
Anikó Kőnig-Péter ◽  
Béla Kocsis ◽  
Ferenc Kilár ◽  
Tímea Pernyeszi

Biosorption of Cd(II) and Pb(II) ions from aqueous solution using lyophilized Pseudomonas aeruginosa (PAOI) cells were observed under various experimental conditions. The effect of pH, initial metal concentration, equilibration time and temperature on bioadsorption was investigated. The optimum pH value for Pb(II) adsorption was found to be 5.0, and for Cd(II) 5.0 ? 6.0. The Pb(II) and Cd(II) bioadsorption equilibrium were analyzed by using Freundlich and Langmuir model using nonlinear least-squares estimation. The experimental maximum uptake capacity of Pb(II) and Cd(II) was estimated to be 164 mg g-1 and 113 mg g-1, respectively. For biosorption kinetic study the pseudo second-order kinetic model was applied at various temperatures. The temperature had no significant effect on Pb(II) bioadsorption. In case of Cd(II) bioadsorption the adsorbed amount decreased with increasing temperature.


2018 ◽  
Vol 9 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Mohammad Nasir Uddin ◽  
Jahangir Alam ◽  
Syeda Rahimon Naher

The adsorption capacity of chromium(III) from synthetic waste water solution by a low cost biomaterial, Jute Stick Powder (JSP)was examined. A series of batch experiments were conducted at different pH values, adsorbent dosage and initial chromium concentration to investigate the effects of these experimental conditions. To analyze the metal adsorption on to the JSP, most common adsorption isotherm models were applied. To study the reaction rate, the kinetic and diffusion models were also applied. The morphological structure and variation of functional groups in the JSP before and after adsorption was examined by scanning electron microscope (SEM) and Fourier transform infrared spectrometry (FT-IR). Maximum chromium removal capacities of JSP was 84.34%with corresponding equilibrium uptake 8.4 mg/g from 50 mg/L of synthetic metal solution in 60 minutes of contact time at pH = 6.0 and 28 °C with continuous stirring at 180 rpm. The percent sorption of the biomass decreased with increasing concentration of metal ion but increased with decreasing pH, increasing contact time and adsorbent doses. Data for this study indicated a good correspondence with both isotherms of Langmuir and Freundlich isotherm. The analysis of kinetic indicated that Chromium was consistent with the second-order kinetic adsorption model. The rate of removal of Cr(III) ions from aqueous solution by JSP was found rapid initially within 5-30 minutes and reached in equilibrium in about 40 minutes. The investigation revealed that JSP, a low cost agricultural byproduct, was a potential adsorbent for removal of heavy metal ions from aqueous solution.


2019 ◽  
Vol 10 (1) ◽  
pp. 4706-4713

Clean water is an essential element for the survival of humans and nature. However, the tremendous growth in industrialization has degraded the water quality by introducing pollutants such as dyes into the main water bodies such as rivers. In this research, the locally collected agricultural wastes such as watermelon peel (Citrullus lanatus) and corn peel (Zea Mays) were tested on two types of synthetics dyes such Remazol Brilliant Violet 5R (RBV5) and Remazol Brilliant Blue R (RBBR). From the screening test, the watermelon peel achieved the highest color removal percentage with 44.8% and followed by corn’s peel with 18.89%. Both adsorbents were selected for the batch adsorption test by varying the parameters. Based on the results achieved from the batch adsorption test, the optimum removal of dye particles was achieved at the lowest concentration of dye solutions. The optimum pH value to achieve a high percentage of color removal is at pH3, which is acidic. In this case, the 3 g of adsorbent dosage achieved the highest percentage of color removal compared to 5 g. This could due to insufficient contact time. In addition, the chemical and physical characteristics of the adsorbents were analyzed using FESEM and FTIR respectively. By analyzing the surface texture and functional group, differences in the adsorbents before and after adsorption were noticed. Besides that, based on the obtained R2 values from the linear plotting, the Temkin isotherm model and pseudo-second-order kinetic model fitted well compared to other isotherm and kinetic models. In conclusion, the watermelon peel and corn peel are capable of removing dye particles in the industrial effluent under selective conditions with low cost while being environmentally friendly.


2019 ◽  
Vol 5 (4) ◽  
pp. 76
Author(s):  
Nogueira ◽  
Matos ◽  
Bernardo ◽  
Pinto ◽  
Lapa ◽  
...  

A char produced from spent tire rubber showed very promising results as an adsorbent of Remazol Yellow (RY) from aqueous solutions. Spent tire rubber was submitted to a pyrolysis process optimized for char production. The obtained char was submitted to chemical, physical, and textural characterizations and, subsequently, applied as a low-cost adsorbent for dye (RY) removal in batch adsorption assays. The obtained char was characterized by relatively high ash content (12.9% wt), high fixed-carbon content (69.7% wt), a surface area of 69 m2/g, and total pore volume of 0.14 cm3/g. Remazol Yellow kinetic assays and modelling of the experimental data using the pseudo-first and pseudo-second order kinetic models demonstrated a better adjustment to the pseudo-first order model with a calculated uptake capacity of 14.2 mg RY/g char. From the equilibrium assays, the adsorption isotherm was fitted to both Langmuir and Freundlich models; it was found a better fit for the Langmuir model to the experimental data, indicating a monolayer adsorption process with a monolayer uptake capacity of 11.9 mg RY/g char. Under the experimental conditions of the adsorption assays, the char presented positive charges at its surface, able to attract the deprotonated sulfonate groups (SO3−) of RY; therefore, electrostatic attraction was considered the most plausible mechanism for dye removal.


2014 ◽  
Vol 12 (1) ◽  
pp. 477-486 ◽  
Author(s):  
Abbas H. Sulaymon ◽  
Ahmed A. Mohammed ◽  
Tariq J. Al-Musawi

Abstract This study aims to evaluate the ability of abundant low-cost garden grass to remove cadmium and chromium ions from aqueous solutions. Batch biosorption studies were carried out to examine the biosorption capacity, pH value, temperature, agitation speed, and metal ions concentration. The biosorption process revealed that the garden grass was an effective biosorbent of cadmium and chromium. The maximum chromium and cadmium removal rate was 90 and 80% at pH 4, respectively. FTIR spectroscopy analysis showed that the hydroxyl, amine, and carboxyl groups were the major groups responsible for the biosorption process. The maximum biosorption capacity was 18.19 and 19.4 mg/g for cadmium and chromium, respectively. The biosorption isotherm data fitted well the Langmuir model. Kinetic data were adequately fitted by the pseudo-second-order kinetic model.


2012 ◽  
Vol 18 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Jianwei Ren ◽  
Mokgadi Bopape ◽  
Katlego Setshedi ◽  
Jacob Kitinya ◽  
Maurice Onyango

This study explored the feasibility of using magnetic eggshell-Fe3O4 powder as adsorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution. The metal ionsadsorption media interaction was characterized using XRD and FTIR. The effects of contact time, initial concentrations, temperature, solution pH and reusability of the adsorption media were investigated. The metal ions adsorption was fast and the amount of metal ions adsorbed increased with an increase in temperature, suggesting an endothermic adsorption. The kinetic data showed that the adsorption process followed the pseudo-second-order kinetic model. The optimal adsorption pH value was around 5.5 at which condition the equilibrium capacity was 263.2 mg/g for Pb(II) and 250.0 for Cu(II). The adsorption equilibrium data fitted very well to the Langmuir and Freundlich adsorption isotherm models. The thermodynamics of Pb(II) and Cu(II) adsorption onto the magnetic eggshell-Fe3O4 powder indicated that the adsorption was spontaneous. The reusability study has proven that magnetic eggshell-Fe3O4 powder can be employed as a low-cost and easy to separate adsorbent.


Sign in / Sign up

Export Citation Format

Share Document