scholarly journals Requirements Documents for the Large Mechanical Parts Precision Cleaner (LMPPC) in the Optics Assembly Building (OAB)

2021 ◽  
Author(s):  
J Oliveira
2001 ◽  
Vol 1 (1) ◽  
pp. 17-23 ◽  
Author(s):  
E. Jungo ◽  
Petra M. Visser ◽  
Jasper Stroom ◽  
Luuc R. Mur

The problem of Lake Nieuwe Meer (area = 1.3 km2, max. depth 30 m, Ptot = 500 mg/m3) was extensive growth of Microcystis with disturbing scum forming. Since 1993 the lake has been artificially mixed in summer by a bubble plume installation. The result is quite successful since the mass of Microcystis is up to 20 times lower than in the years before mixing and no scum is present any more. The study in Lake Nieuwe Meer showed a shift from cyanobacterial dominance (mainly Microcystis) to flagellates, green-algae and diatoms when artificial mixing was applied. Total phosphorus and nitrogen concentrations did not change as a result of mixing and had apparently no effect on the shift in the phytoplankton composition. The chlorophyll-a concentration was much lower in the mixed lake as a result of dilution. The total algae biomass decreased. The transparency did not improve. The total heat energy of the lake is slightly higher than before mixing but still remains in the range of annual fluctuation. The temperature on the surface is approximately 2°C lower. In the whole water-body oxygen was always higher than 5 mg/l. Living space for fish is therefore wider. The installation in Lake Nieuwe Meer consists of flexible pipes near the sediment, built in a way to prevent sediment erosion and transport into the water. There are no constructions in the water-body. All mechanical parts are on land. The layout of the installation is shown in Fig. 1. Installed compressor energy is 85 kW. This is equivalent to an upper middle-class motor-car. The design was made specifically for this problem. It is based on the physical data of the algae and the plant. It would be beneficial to use this 7 year's experience for further applications e.g. elimination of toxic algae in drinking-water reservoirs.


Author(s):  
Zakarya Omar ◽  
Xingsong Wang ◽  
Khalid Hussain ◽  
Mingxing Yang

AbstractThe typical power-assisted hip exoskeleton utilizes rotary electrohydraulic actuator to carry out strength augmentation required by many tasks such as running, lifting loads and climbing up. Nevertheless, it is difficult to precisely control it due to the inherent nonlinearity and the large dead time occurring in the output. The presence of large dead time fires undesired fluctuation in the system output. Furthermore, the risk of damaging the mechanical parts of the actuator increases as these high-frequency underdamped oscillations surpass the natural frequency of the system. In addition, system closed-loop performance is degraded and the stability of the system is unenviably affected. In this work, a Sliding Mode Controller enhanced by a Smith predictor (SMC-SP) scheme that counts for the output delay and the inherent parameter nonlinearities is presented. SMC is utilized for its robustness against the uncertainty and nonlinearity of the servo system parameters whereas the Smith predictor alleviates the dead time of the system’s states. Experimental results show smoother response of the proposed scheme regardless of the amount of the existing dead time. The response trajectories of the proposed SMC-SP versus other control methods were compared for a different predefined dead time.


2014 ◽  
Vol 989-994 ◽  
pp. 3208-3211
Author(s):  
Dan Tong Li ◽  
Zheng Zhang ◽  
Jia Wen Deng ◽  
Ming Yu Huang ◽  
Xiao Feng Wan ◽  
...  

The rapid prototyping technology was introduced, including its definition, principle and characteristics. The advantages of rapid prototyping technology in new product development were analyzed. Application of rapid prototyping technology in design of mechanical parts, industrial model, medical model, ceramic products, automobile model and products based on ergonomics was discussed. The feasibility of rapid prototyping technology in product design and the optimization direction was prospected.


2015 ◽  
Vol 752-753 ◽  
pp. 839-844
Author(s):  
R.M.S. Zetty ◽  
B.A. Aminudin ◽  
L.M. Aung ◽  
M.K. Khalid ◽  
H.M.Y. Norfazrina ◽  
...  

A modeling through sensitivity analysis is one of the promising methods to investigate the dynamic characteristics of complex mechanical parts. This study aimed to investigate the effect of sensitivity based on mass and stiffness modification in automobile crankshaft as a function of natural frequency. Verification for the crankshaft model that is used in the experiment and simulation was done and both results showed good agreement and small errors percentage. The modification was also done by reducing the different percentage of crankshaft’s mass and stiffness. Partial differential analysis was used in the sensitivity analysis in order to figure out the natural frequency after every set of modification. According to the results, we also found that there were changes of sensitivity value by changes in mass value but the stiffness value remains unchanged. However, there is no significant effect of stiffness reduction on vibration was found in this research.


Author(s):  
Reza Bihamta ◽  
Guillaume D’Amours ◽  
Quang-Hien Bui ◽  
Ahmed Rahem ◽  
Michel Guillot ◽  
...  

The variable thickness tube drawing is a new modification in the tube drawing methods which enables production of axially variable thickness tubes faster and easier in comparison with other similar methods like radial forging or indentation forging. The production of this type of tubes can be used in optimum design of mechanical parts which do not necessarily need constant thickness along the axis of tube and this method can strikingly reduce the overall weight of parts and mechanical assemblies like cars. In this paper, the variable thickness tube drawing were parameterized in a MATLAB code and optimized with the Ls-Opt software as an optimization engine and Ls-Dyna as a FE solver. The final objective of this optimization study is to determine the minimum thickness which can be produced in one step by this method with various tube dimensions (tube thickness and outer diameter). For verification of results, some experiments were performed in the tube drawing machine which was fabricated by this research group and acceptable correspondence was observed between numerical and experimental results.


2012 ◽  
Vol 184 ◽  
pp. 313-318 ◽  
Author(s):  
Daniele Mari ◽  
L.M. Berger ◽  
S. Stahr

Thermally sprayed hardmetal coatings can be used to improve the wear or fatigue resistance of mechanical parts. Depending on the deposition conditions, their microstructure and phase composition are out of equilibrium at different levels due to the extreme heating/cooling rates. In the present study, the changes that occur with temperature variation are monitored by mechanical spectroscopy. Requirements to specimen of mechanical spectroscopy created the need to prepare WC-17%Co coatings of 1.2 mm thickness by high velocity oxy-fuel (HVOF) spraying. The coatings, separated from the substrate by spark erosion, were tested in a forced torsion pendulum between room temperature and 1570 K at a temperature scanning rate of 1K/min. The mechanical loss spectrum shows different features. At 800 K, a maximum M1 is observed in coincidence with a sudden increase of the elastic modulus. The change of the elastic modulus is due to a densification of the material possibly related to cobalt recrystallization. A relaxation peak located at about 1100 K is typically found in WC-Co hardmetals. It is attributed to the movement of dislocations in the cobalt phase. A sharp peak is observed at 1510 K on heating and at 1410 K on cooling. Such peak is due to the reversible transition from W3Co3C at high temperature to W6Co6C at low temperature as proven by X-ray diffraction. The reversibility of such transformation was observed for the first time.


Sign in / Sign up

Export Citation Format

Share Document