scholarly journals Optimization on the Production of Variable Thickness Aluminium Tubes

Author(s):  
Reza Bihamta ◽  
Guillaume D’Amours ◽  
Quang-Hien Bui ◽  
Ahmed Rahem ◽  
Michel Guillot ◽  
...  

The variable thickness tube drawing is a new modification in the tube drawing methods which enables production of axially variable thickness tubes faster and easier in comparison with other similar methods like radial forging or indentation forging. The production of this type of tubes can be used in optimum design of mechanical parts which do not necessarily need constant thickness along the axis of tube and this method can strikingly reduce the overall weight of parts and mechanical assemblies like cars. In this paper, the variable thickness tube drawing were parameterized in a MATLAB code and optimized with the Ls-Opt software as an optimization engine and Ls-Dyna as a FE solver. The final objective of this optimization study is to determine the minimum thickness which can be produced in one step by this method with various tube dimensions (tube thickness and outer diameter). For verification of results, some experiments were performed in the tube drawing machine which was fabricated by this research group and acceptable correspondence was observed between numerical and experimental results.

Author(s):  
Q. H. Bui ◽  
R. Bihamta ◽  
M. Guillot ◽  
A. Rahem ◽  
M. Fafard

Variable thickness tube drawing is a new process for the production of high performance tubes. In this study, experiments were conducted to evaluate the effect of cross section reduction on the microstructure and mechanical properties of variable thickness aluminium tubes drawn using two different position controlled mandrel techniques. Various tubes with three different outer diameters were subjected to cold drawing at room temperature from 11% to 41% cross section reduction. The local mechanical properties were determined from tensile tests carried out on specimens cut from different positions in the tubes parallel to their axes. The distributions of the Vickers hardness over the surfaces at 0 deg and 90 deg to the drawing direction were examined. It was found that the microhardness, yield strength, and ultimate tensile of the deformed samples increase and the corresponding elongation decreases with the increase of cross section reduction. Also, the anisotropy in microstructure and mechanical properties is more significant with increasing of cross section reduction. The evolution of mechanical properties of drawn tubes versus cross section reduction depends on the mandrel shapes and initial tube outer diameter. This study helps to further understand the microstructure and mechanical properties evolutions during tube drawing process with variable thickness.


2011 ◽  
Vol 690 ◽  
pp. 447-450 ◽  
Author(s):  
Reza Bihamta ◽  
Quang Hien Bui ◽  
Michel Guillot ◽  
Guillaume D'Amours ◽  
Ahmed Rahem ◽  
...  

Tubular products have very important applications in various areas especially in the transportation industries. For instance, in the structure of cars there are various tubular products like roof headers, engine cradles, roof rails and frame rails with complex geometries which most of them need multiple steps like tube drawing, tube bending and hydroforming for their production. Based on the recent studies by this group, it was proven that in most of the structural tubular parts in the cars it was not necessary to have constant thickness along the axial direction of tube and it will be considered as overdesign and the overall weight of structures can be reduced considerably by using variable thickness tubes. In this paper, the variable thickness tube drawing and its applications in the tube bending and hydroforming applications were studied. The results showed that this process can have important role in reduction of defective parts in the production of complex tubes by the tube hydroforming method. However especial considerations should be taken into account in the design of thickness distribution along axial direction of these kinds of tubes to avoid problems in the drawing step and as well in the bending and hydroforming steps.


Author(s):  
V Kumar ◽  
SJ Singh ◽  
VH Saran ◽  
SP Harsha

The present paper investigates the free vibration analysis for functionally graded material plates of linearly varying thickness. A non-polynomial higher order shear deformation theory is used, which is based on inverse hyperbolic shape function for the tapered FGM plate. Three different types of material gradation laws, specifically: a power (P-FGM), exponential (E-FGM), and sigmoid law (S-FGM) are used to calculate the property variation in the thickness direction of FGM plate. The variational principle has been applied to derive the governing differential equation for the plates. Non-dimensional frequencies have been evaluated by considering the semi-analytical approach viz. Galerkin-Vlasov’s method. The accuracy of the preceding formulation has been validated through numerical examples consisting of constant thickness and tapered (variable thickness) plates. The findings obtained by this method are found to be in close agreement with the published results. Parametric studies are then explored for different geometric parameters like taper ratio and boundary conditions. It is deduced that the frequency parameter is maximum for S-FGM tapered plate as compared to E- and P-FGM tapered plate. Consequently, it is concluded that the S-FGM tapered plate is suitable for those engineering structures that are subjected to huge excitations to avoid resonance conditions. In addition, it is found that the taper ratio is significantly affected by the type of constraints on the edges of the tapered FGM plate. Some novel results for FGM plate with variable thickness are also computed that can be used as benchmark results for future reference.


2021 ◽  
Vol 98 (6) ◽  
pp. 36-42
Author(s):  
A.V. TURKOV ◽  
◽  
S.I. POLESHKO ◽  
E.A. FINADEEVA ◽  
K.V. MARFIN ◽  
...  

The relationship between the maximum deflections from a static uniformly distributed load W0 and the fundamental frequency of natural transverse vibrations of a round isotropic plate of linearly variable thickness with thickening to the edge under homogeneous conditions of support along the outer contour, depending on the ratio of the thickness of the plate in the center to the thickness along the edge, is considered. According to the results of the study, graphs of the dependence of the maximum deflection and the frequency of natural vibrations of the plate on the ratio t1 / t2 are constructed. It is shown that for round plates of linearly variable thickness at t1/t2<1.1 coefficient K with an accuracy of 5.9% coincides with the analytical coefficient for round plates of constant thickness. Numerical studies shows that when the ratio of the thicknesses on the contour and in the center is equal to two, the difference in the coefficient K, which depends on the relationship between the static and dynamic characteristics of the platinum, is about 25% for hinged support along the contour and up to 37% for rigid support. This indicates a more significant effect of uneven mass distribution for such boundary conditions.


1983 ◽  
Vol 105 (1) ◽  
pp. 137-143 ◽  
Author(s):  
H. Lecoanet ◽  
J. Piranda

This paper gives some results on inplane vibrations of circular ring with a radially variable thickness. The problem is solved with the Galerkin method [1] making use of the eigenfunctions of a constant thickness ring. Good agreement is obtained between the approximate results and those of the exact calculus or experimental data.


1994 ◽  
Vol 116 (4) ◽  
pp. 989-996
Author(s):  
Chung-Yun Gau ◽  
Souran Manoochehri

A method for the design of nonhomogeneous, variable-thickness, annular disks under internal and external pressures satisfying Tresca yield criterion is presented in this paper. The effects of varying the disk thickness and stiffness properties to achieve a fully stressed design are investigated. Analytical solutions for distributions of Young’s modulus and disk thickness variations have been developed for the case of fully stressed designs. Examples are given for three different cases, namely, constant thickness with variable Young’s modulus, variable thickness with constant Young’s modulus, and variable thickness with variable Young’s modulus. In the last case, due to the existence of many alternative solutions, optimal design techniques have been utilized. Application of the developed methodology for optimal designs of short fiber composites with random fiber orientations is discussed. The optimization results of fiber volume fraction distributions and thickness variations for a disk made of nylon 66 matrix with E glass fiber are given under specified pressure loadings.


Author(s):  
Kaina Teshima ◽  
Yoichi Iwamoto ◽  
Kiminobu Hojo ◽  
Tomoyuki Oka ◽  
Kunihiro Kobayashi ◽  
...  

Although the minimum thickness of pipe wall required (tsr) of T-joints (tees) of class 2, 3 and lower classes of nuclear power plants in Japan is calculated from the design pressure and temperature, there is no rule or standard of wall thinning T-joints for thickness management. This paper describes the pressure tests procedure and six test results with parameters of T-joint geometry such as outer diameter D, thickness T and T/D to establish structural integrity of wall thinning T-joints. Based on the fracture surface observation, a ductile crack initiation of each test mock-ups was confirmed.


Author(s):  
S.A. Vorobei ◽  
I.Yu. Prykhodko ◽  
V.V. Raznosilin

The purpose of the work is to determine rational schemes for their production by analyzing the technological and design parameters of a number of broadband mills that roll hot-rolled strips less than 2,0 mm thick. It is shown that at present there is a constant increase in the production of extremely thin hot-rolled strips (0,8-1,5 mm thick), which can be used instead of more expensive (by $ 20-30 per ton) cold-rolled strips. The development of the production of hot-rolled strips of such a thickness is limited by a number of problems, in particular, the low temperature of the end of rolling (760-820 °C), which leads to a significant decrease in the ductility of the rolled stock; limiting the rolling filling speed, which does not allow increasing the temperature of the end of rolling the complexity of controlling the cross-sectional profile and flatness of the strips. Using mathematical modeling, it was found that the strip thickness and rolling speed have the greatest influence on the temperature of the end of rolling. The thickness and temperature of the rolls at the entrance to the finishing group of stands have a lesser effect. A decrease in the number of stands in the finishing group increases the temperature of the end of rolling at a constant thickness of the rolls, but when the thickness of the rolls changes in accordance with the number of stands, the effect is significantly reduced. The most favorable technological parameters for the production of extra-thin hot-rolled strips are provided by casting and rolling units, which are characterized, in comparison with broad-strip mills, as a rule, by a greater thickness and temperature of the rolls (or continuously cast slabs) and a smaller number of stands. An increase in the thickness of billets (slabs) requires an increase in the permissible values of the energy-power parameters of rolling, as well as the use of special solutions that will ensure minimal heat loss by the rolls before entering the finishing group of stands. Calculations show that, based on the reliable maximum refueling speed of hotrolled strips (10-11.5 m / s) achieved in the industry, the minimum thickness of strips with high plastic characteristics is: for broad-strip mills - 1.9-2.0 mm; for casting and rolling units, depending on their type - 1.3-1.6 mm.


2020 ◽  
Vol 70 (3) ◽  
pp. 292-298
Author(s):  
Rajinder Singh ◽  
Ravindra K. Saxena ◽  
Kishore Khanna ◽  
V. K. Gupta

The study compares the steady state creep response of rotating Al-SiC discs having constant, linear, hyperbolic and exponential thickness with different thickness profiles. All the discs are assumed to have equal volume with the same average thickness. The creep behaviour of the disc material is described by threshold stress based law while the yielding is assumed to follow Tresca criterion. The variable thickness disc is observed to have superior creep response, expressed in terms of stresses and strain rates, to a constant thickness disc. Amongst variable thickness discs, the creep response is observed to be superior for linear thickness disc, when the inner thickness of all the discs is kept the same. However, for the same outer thickness, the disc having hyperbolic thickness profile exhibits the best creep response.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 61
Author(s):  
Zhenfa Xu ◽  
Fanyu Kong ◽  
Lingfeng Tang ◽  
Mingwei Liu ◽  
Jiaqiong Wang ◽  
...  

Blade thickness is an essential parameter of the impeller, which has significant effects on the pump performance. The plastic pump generally adopts thick blade due to low strength of plastic. The effects of blade thickness on the internal flow and performance of a plastic centrifugal pump were discussed based on the numerical methods. Two kinds of blade profile, the constant thickness blade (CTB) and the variable thickness blade (VTB), were investigated. The results indicated that, for the CTB, when the blade thickness was less than 6 mm, the pump performance did not change significantly. When the blade thickness exceeded 6 mm, the pump head and efficiency decreased rapidly. The pump head and efficiency of CTB 10 decreased by 42.2% and 30% compared with CTB 4, respectively. For the VTB, with blade thickness in a certain range (6 mm–14 mm), the pump performance changed slightly with the increased of trailing edge thickness. The minimum blade thickness of the plastic centrifugal pump should be 4 mm based on the finite element analysis. A variable thickness blade (VTB 4-8-4) with the maximum thickness located at 60% chord length was proposed to improve the pump performance, and its efficiency was 1.67% higher than that of the CTB 4 impeller.


Sign in / Sign up

Export Citation Format

Share Document