Preface [Hot topic: Non-Viral Vectors for Gene Therapy and Drug Delivery (Guest Editor: Cyrus R. Safinya)]

2004 ◽  
Vol 11 (2) ◽  
pp. i-i ◽  
Author(s):  
Cyrus Safinya
Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3307
Author(s):  
Shuaikai Ren ◽  
Mengjie Wang ◽  
Chunxin Wang ◽  
Yan Wang ◽  
Changjiao Sun ◽  
...  

Vectors and carriers play an indispensable role in gene therapy and drug delivery. Non-viral vectors are widely developed and applied in clinical practice due to their low immunogenicity, good biocompatibility, easy synthesis and modification, and low cost of production. This review summarized a variety of non-viral vectors and carriers including polymers, liposomes, gold nanoparticles, mesoporous silica nanoparticles and carbon nanotubes from the aspects of physicochemical characteristics, synthesis methods, functional modifications, and research applications. Notably, non-viral vectors can enhance the absorption of cargos, prolong the circulation time, improve therapeutic effects, and provide targeted delivery. Additional studies focused on recent innovation of novel synthesis techniques for vector materials. We also elaborated on the problems and future research directions in the development of non-viral vectors, which provided a theoretical basis for their broad applications.


2021 ◽  
Vol 22 (21) ◽  
pp. 11491
Author(s):  
Juliana Sitta ◽  
Candace M. Howard

Gene therapy has continuously evolved throughout the years since its first proposal to develop more specific and effective transfection, capable of treating a myriad of health conditions. Viral vectors are some of the most common and most efficient vehicles for gene transfer. However, the safe and effective delivery of gene therapy remains a major obstacle. Ultrasound contrast agents in the form of microbubbles have provided a unique solution to fulfill the need to shield the vectors from the host immune system and the need for site specific targeted therapy. Since the discovery of the biophysical and biological effects of microbubble sonification, multiple developments have been made to enhance its applicability in targeted drug delivery. The concurrent development of viral vectors and recent research on dual vector strategies have shown promising results. This review will explore the mechanisms and recent advancements in the knowledge of ultrasound-mediated microbubbles in targeting gene and drug therapy.


2020 ◽  
Vol 20 (3) ◽  
pp. 195-206 ◽  
Author(s):  
Shriya Agarwal ◽  
Vinayak Agarwal ◽  
Mugdha Agarwal ◽  
Manisha Singh

Abstract: In recent times, several approaches for targeted gene therapy (GT) had been studied. However, the emergence of extracellular vesicles (EVs) as a shuttle carrying genetic information between cells has gained a lot of interest in scientific communities. Owing to their higher capabilities in dealing with short sequences of nucleic acid (mRNA, miRNA), proteins, recombinant proteins, exosomes, the most popular form of EVs are viewed as reliable biological therapeutic conveyers. They have natural access through every biological membrane and can be employed for site-specific and efficient drug delivery without eliciting any immune responses hence, qualifying as an ideal delivery vehicle. Also, there are many research studies conducted in the last few decades on using exosome-mediated gene therapy into developing an effective therapy with the concept of a higher degree of precision in gene isolation, purification and delivery mechanism loading, delivery and targeting protocols. This review discusses several facets that contribute towards developing an efficient therapeutic regime for gene therapy, highlighting limitations and drawbacks associated with current GT and suggested therapeutic regimes.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


2000 ◽  
Vol 11 (2) ◽  
pp. 408 ◽  
Author(s):  
Ziv J. Haskal ◽  
Matthew S. Johnson ◽  
Krishna Kandarpa ◽  
Steven Raper

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuewen Wu ◽  
Li Zhang ◽  
Yihui Li ◽  
Wenjuan Zhang ◽  
Jianjun Wang ◽  
...  

AbstractMutations in voltage-gated potassium channel KCNE1 cause Jervell and Lange-Nielsen syndrome type 2 (JLNS2), resulting in congenital deafness and vestibular dysfunction. We conducted gene therapy by injecting viral vectors using the canalostomy approach in Kcne1−/− mice to treat both the hearing and vestibular symptoms. Results showed early treatment prevented collapse of the Reissner’s membrane and vestibular wall, retained the normal size of the semicircular canals, and prevented the degeneration of inner ear cells. In a dose-dependent manner, the treatment preserved auditory (16 out of 20 mice) and vestibular (20/20) functions in mice treated with the high-dosage for at least five months. In the low-dosage group, a subgroup of mice (13/20) showed improvements only in the vestibular functions. Results supported that highly efficient transduction is one of the key factors for achieving the efficacy and maintaining the long-term therapeutic effect. Secondary outcomes of treatment included improved birth and litter survival rates. Our results demonstrated that gene therapy via the canalostomy approach, which has been considered to be one of the more feasible delivery methods for human inner ear gene therapy, preserved auditory and vestibular functions in a dose-dependent manner in a mouse model of JLNS2.


2021 ◽  
Vol 22 (14) ◽  
pp. 7545
Author(s):  
Myriam Sainz-Ramos ◽  
Idoia Gallego ◽  
Ilia Villate-Beitia ◽  
Jon Zarate ◽  
Iván Maldonado ◽  
...  

Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.


2021 ◽  
Vol 22 (4) ◽  
pp. 1815 ◽  
Author(s):  
Gabriel Ocana-Santero ◽  
Javier Díaz-Nido ◽  
Saúl Herranz-Martín

Friedreich’s ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich’s ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich’s ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich’s ataxia, addressing the main challenges and the most feasible solutions for them.


Sign in / Sign up

Export Citation Format

Share Document