Use of Anticancer Platinum Compounds in Combination Therapies and Challenges in Drug Delivery

2020 ◽  
Vol 27 (18) ◽  
pp. 3055-3078 ◽  
Author(s):  
Xiao Xiao ◽  
James Trevor Oswald ◽  
Ting Wang ◽  
Weina Zhang ◽  
Wenliang Li

As one of the leading and most important metal-based drugs, platinum-based pharmaceuticals are widely used in the treatment of solid malignancies. Despite significant side effects and acquired drug resistance have limited their clinical applications, platinum has shown strong inhibitory effects for a wide assortment of tumors. Drug delivery systems using emerging technologies such as liposomes, dendrimers, polymers, nanotubes and other nanocompositions, all show promise for the safe delivery of platinum-based compounds. Due to the specificity of nano-formulations; unwanted side-effects and drug resistance can be largely averted. In addition, combinational therapy has been shown to be an effective way to improve the efficacy of platinum based anti-tumor drugs. This review first introduces drug delivery systems used for platinum and combinational therapeutic delivery. Then we highlight some of the recent advances in the field of drug delivery for combinational therapy; specifically progress in leveraging the cytotoxic nature of platinum-based drugs, the combinational effect of other drugs with platinum, while evaluating the drug targeting, side effect reducing and sitespecific nature of nanotechnology-based delivery platforms.

2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


Author(s):  
Peng Xie ◽  
Yushu Wang ◽  
Dengshuai Wei ◽  
Lingpu Zhang ◽  
Bin Zhang ◽  
...  

The mechanisms of chemoresistance and nanoparticle-based drug delivery systems for platinum drugs were detailed summarized in this review. The current combination therapy provided an effective strategy to overcome the platinum drug resistance.


2021 ◽  
Vol 28 ◽  
Author(s):  
Aleksandra Zielińska ◽  
Piotr Eder ◽  
Lucas Rannier ◽  
Juliana C. Cardoso ◽  
Patrícia Severino ◽  
...  

Abstract: Hydrogels for the modified-release drug delivery systems is a continuously growing area of interest for the pharmaceutical industry. According to the global market, the use of polymers in this area is projected to reach $31.4 million by 2027. This review discusses the recent advances and perspectives of hydrogel in drug delivery systems for oral, parenteral, nasal, topical, and ophthalmic. The search strategy did in January 2021, and it conducted an extensive database to identify studies published from January 2010 to December 2020.We described the main characteristic of the polymers to obtain an ideal hydrogel for a specific route of administration and the formulations that was a highlight in the literature. It concluded that the hydrogels are a set useful to decrease the number of doses, side effects, promote adhesion of patient and enhances the bioavailability of the drugs improving the safety and efficacy of the treatment.


2021 ◽  
Author(s):  
Yubin Huang ◽  
Hongtong Lu ◽  
Shasha He ◽  
Qingfei Zhang ◽  
Xiaoyuan Li ◽  
...  

The clinical application of conventional chemotherapeutic agents, represented by cisplatin, is limited by severe side effects. So, it is essential to explore more safer and controlled drug delivery systems for...


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1742 ◽  
Author(s):  
Olga Cegielska ◽  
Paweł Sajkiewicz

Each year, new glaucoma drug delivery systems are developed. Due to the chronic nature of the disease, it requires the inconvenient daily administration of medications. As a result of their elution from the eye surface and penetration to the bloodstream through undesired permeation routes, the bioavailability of active compounds is low, and systemic side effects occur. Despite numerous publications on glaucoma drug carriers of controlled drug release kinetics, only part of them consider drug permeation routes and, thus, carriers’ location, as an important factor affecting drug delivery. In this paper, we try to demonstrate the importance of the delivery proximal to glaucoma drug targets. The targeted delivery can significantly improve drug bioavailability, reduce side effects, and increase patients’ compliance compared to both commercial and scientifically developed formulations that can spread over the eye surface or stay in contact with conjunctival sac. We present a selection of glaucoma drug carriers intended to be placed on cornea or injected into the aqueous humor and that have been made by advanced materials using hi-tech forming methods, allowing for effective and convenient sustained antiglaucoma drug delivery.


2019 ◽  
Vol 8 (1) ◽  
pp. 43-57
Author(s):  
O. V. Trineeva ◽  
A. J. Halahakoon ◽  
A. I. Slivkin

Introduction. Drug delivery systems are defined as systems that deliver the optimal amount of a drug to a target target, increase the effectiveness of treatment, and reduce adverse effects. Regulation of the rate of release of drugs and bringing to specific tissues where active ingredients are needed are the main objectives of drug delivery systems. The development of systems for targeted, organ-specific and controlled delivery of medicinal, prophylactic and diagnostic agents is currently a relevant area of research for pharmacy and medicine. Of particular interest is the actual problem of increasing the frequency of manifestations of side effects of drugs. The side effect of drugs, their low efficiency is often explained by the inaccessibility of drugs directly to the target. Text. Currently, targeted delivery of chemotherapeutic agents and drug delivery systems has completely changed the tactics and approaches in the drug treatment of cancer, allowing to reduce the side effects of the drug and generally increase the effectiveness of the course of treatment. This paper summarizes and systematizes information about targeted systems for drug delivery of antitumor activity, described in the scientific literature and used in pharmacy and medicine. Most of the methods for obtaining cellular forms of toxic drugs discussed in this review are still at the development stage, and some methods are gradually finding practical application abroad in medicine and other fields. Vincristine (VCR) and vinblastine (VBL) are the most widely used and effective drugs in chemotherapeutic practice. Despite their effectiveness against various oncological diseases, there are a number of harmful side effects that limit the widespread use of these drugs. Conclusion. There is the possibility of using cellular carriers as a VCR and VBL delivery system. In scientific publications, there is still no data on the use of cellular carriers for encapsulating VCR and VBL. Therefore, relevant studies are devoted to the possibility of using cellular carriers to reduce side effects, improve efficiency, and develop dosage forms for the delivery of VCR and VBL to pathological foci. This topic is currently being actively developed by members of the Department of Pharmaceutical Chemistry and Pharmaceutical Technology, Pharmaceutical Faculty, Voronezh State University.


2018 ◽  
Vol 18 (8) ◽  
pp. 792-806 ◽  
Author(s):  
Urvashi Aggarwal ◽  
Amit Kumar Goyal ◽  
Goutam Rath

Cervical cancer is the second most common cancer in women. Standard treatment options available for cervical cancer include chemotherapy, surgery and radiation therapy associated with their own side effects and toxicities. Tumor-targeted delivery of anticancer drugs is perhaps one of the most appropriate strategies to achieve optimal outcomes from the treatment and improve the quality of life. Recently nanocarriers based drug delivery systems owing to their unique properties have been extensively investigated for anticancer drug delivery. In addition to that addressing the anatomical significance of cervical cancer, various local drug delivery strategies for the cancer treatment are introduced like: gels, nanoparticles, polymeric films, rods and wafers, lipid based nanocarrier. Localized drug delivery systems allow passive drug targeting results in high drug concentration at the target site. Further they can be tailor made to achieve both sustained and controlled release behavior, substantially improving therapeutic outcomes and minimizing side effects. This review summarizes the meaningful advances in drug delivery strategies to treat cervical cancer.


Author(s):  
Emine Kahraman ◽  
Neriman Aydilek ◽  
Sevgi Güngör

: Atopic dermatitis is a chronic inflammatory disease of the skin, which is characterized by itching, erythema and eczematous lacerations. It affects about 10 % of adults and approximately 15-20 % of children in the worldwide. As a result of genetic, immunologic and environmental factors, the disease manifests itself with impaired stratum corneum barrier and then immunological responses. Topical administration of corticosteroids and calcineurin inhibitors are currently used as the first strategy in the management of disease. However, they have low skin bioavailability and some side effects. The nano-carriers as novel drug delivery systems could overcome limitations of conventional dosage forms, owing to increment of poorly soluble drug' solubility, then its thermodynamic activity and consequently its skin permeation. Also, side effects of the drug substances on the skin could be reduced by the nano sized drug delivery systems, due to encapsulation of the drug in the nano-carriers and targeted drug delivery of drug substances to the inflammated skin areas. Thereby, there have been available a numerous of research studies and patents regarding use of the nano-carriers in the management of atopic dermatitis. This review focuses on the mechanism of disease and, developments on the nano-carrier based on novel drug release systems of in the management of atopic dermatitis.


Sign in / Sign up

Export Citation Format

Share Document