Recent Approaches on Novel Topical Delivery Systems for Atopic Dermatitis Treatment

Author(s):  
Emine Kahraman ◽  
Neriman Aydilek ◽  
Sevgi Güngör

: Atopic dermatitis is a chronic inflammatory disease of the skin, which is characterized by itching, erythema and eczematous lacerations. It affects about 10 % of adults and approximately 15-20 % of children in the worldwide. As a result of genetic, immunologic and environmental factors, the disease manifests itself with impaired stratum corneum barrier and then immunological responses. Topical administration of corticosteroids and calcineurin inhibitors are currently used as the first strategy in the management of disease. However, they have low skin bioavailability and some side effects. The nano-carriers as novel drug delivery systems could overcome limitations of conventional dosage forms, owing to increment of poorly soluble drug' solubility, then its thermodynamic activity and consequently its skin permeation. Also, side effects of the drug substances on the skin could be reduced by the nano sized drug delivery systems, due to encapsulation of the drug in the nano-carriers and targeted drug delivery of drug substances to the inflammated skin areas. Thereby, there have been available a numerous of research studies and patents regarding use of the nano-carriers in the management of atopic dermatitis. This review focuses on the mechanism of disease and, developments on the nano-carrier based on novel drug release systems of in the management of atopic dermatitis.

2019 ◽  
Vol 20 (22) ◽  
pp. 5659 ◽  
Author(s):  
Eliana B. Souto ◽  
João Dias-Ferreira ◽  
Jéssica Oliveira ◽  
Elena Sanchez-Lopez ◽  
Ana Lopez-Machado ◽  
...  

Atopic dermatitis (AD) is a predominant and deteriorating chronic inflammation of the skin, categorized by robust burning and eczematous lacerations in diverse portions of the body. AD affects about 20% of both offspring and adults worldwide. The pathophysiology of AD combines environmental, hereditary, and immunological aspects, together with skin barrier dysfunction. The procedures used to prevent the disease are the everyday usage of creams to support the restoration of the epidermal barrier. The classical treatments include the use of topical corticosteroids as a first-line therapy, but also calcineurin inhibitors, antihistamines, antibiotics, phototherapy, and also immunosuppressant drugs in severe cases of AD. Topical drug delivery to deeper skin layers is a difficult task due to the skin anatomic barrier, which limits deeper penetration of drugs. Groundbreaking drug delivery systems, based on nanoparticles (NPs), have received much attention due to their ability to improve solubility, bioavailability, diffusion, targeting to specific types of cells, and limiting the secondary effects of the drugs employed in the treatment of AD. Even so, additional studies are still required to recognize the toxicological characteristics and long-term safety of NPs. This review discusses the current classical pharmacotherapy of AD against new nanoparticle skin delivery systems and their toxicologic risks.


Over the preceding few decades therapeutic/drug delivery systems were explored and investigated as a tactic to advance the efficiency and safety of therapeutic agents for various biomedical applications. Nano-engineering on the various biomaterials are reported and are under investigation to enhance the pharmacokinetics and pharmacodynamics of many drugs, with proven enhancements in terms of objective facility, therapeutic efficacy, reduction in dosing frequency and associated drug side effects. Bioinspired materials from various sources (biomass, plants, animals, cells, biotechnology interventions) are of great interest with additive advantages over synthetic materials in terms of biocompatibility, biodegradation, nontoxicity, non-immunogenic and are cost effective systems. Bioinspired nano platforms are proceeding round the world to contrive novel drug delivery carriers using different strategies. This chapter encompasses encroachments in the diverse types of bioinspired polymers and their nano delivery systems. Comprehensive evidence is also concise on delivery systems morphological, biological functionalities from respectively material and their potentialities as persuasive carriers for drug delivery systems.


2020 ◽  
Vol 26 ◽  
Author(s):  
Ritu Mishra ◽  
Swati Gupta

Background: Rheumatoid arthritis (RA) is the most common occurring progressive, autoimmune disease, affecting 1% of the population and the ratio of affected women is three times as compared to men in most developing countries. Clinical manifestations of RA are the presence of anti-citrullinated protein antibody (ACPA) and rheumatoid factor (RF) in blood, tendered joints and soreness of the muscles. Some other factors which may lead to chronic inflammation are genetic and environmental factors as well as adaptive immune response. Several conventional drugs are available for the treatment of RA but have their own drawbacks which can be overcome by the use of novel drug delivery systems. : The objective of the present review is to focus on the molecular pathogenesis of the disease and its current conventional treatment with special reference to the role of novel drug delivery systems encapsulating anti rheumatic drugs and herbal drugs in passive and receptor mediated active targeting against RA. On reviewing the conventional and current therapeutics agains RA, we conclude that, although the current therapy for the treatment of RA is capable enough, yet more advances in the field of targeted drug delivery will sanguinely result in effective and appropriate treatment of this autoimmune disease.


2015 ◽  
Vol 16 (4) ◽  
pp. 344-364 ◽  
Author(s):  
Zerrin Bayindir ◽  
Nilufer Yuksel

2020 ◽  
Vol 21 (11) ◽  
pp. 1084-1098
Author(s):  
Fengqian Chen ◽  
Yunzhen Shi ◽  
Jinming Zhang ◽  
Qi Liu

This review summarizes the epigenetic mechanisms of deoxyribonucleic acid (DNA) methylation, histone modifications in cancer and the epigenetic modifications in cancer therapy. Due to their undesired side effects, the use of epigenetic drugs as chemo-drugs in cancer therapies is limited. The drug delivery system opens a door for minimizing these side effects and achieving greater therapeutic benefits. The limitations of current epigenetic therapies in clinical cancer treatment and the advantages of using drug delivery systems for epigenetic agents are also discussed. Combining drug delivery systems with epigenetic therapy is a promising approach to reaching a high therapeutic index and minimizing the side effects.


2017 ◽  
Vol 18 (11) ◽  
Author(s):  
Rohit R. Bhosale ◽  
H. V. Gangadharappa ◽  
Umme Hani ◽  
Riyaz Ali M. Osmani ◽  
Rudra Vaghela ◽  
...  

2020 ◽  
Vol 17 ◽  
Author(s):  
Neeraj Mittal ◽  
Varun Garg ◽  
Sanjay Kumar Bhadada ◽  
O. P. Katare

: The corona virus disease 2019 (COVID-19) has found its roots from Wuhan (China). COVID-19 is caused by a novel corona virus SARS-CoV2, previously named as 2019-nCoV. COVID-19 has spread across the globe and declared as pandemic by World health organization (WHO) on 11th March, 2020. Currently, there is no standard drug or vaccine available for the treatment, so repurposing of existing drugs is the only solution. Novel drug delivery systems (NDDS) will be boon for the repurposing of drugs. The role of various NDDS in repurposing of existing drugs for treatment of various viral diseases and their relevance in COVID-19 has discussed in this paper. It focuses on the currently ongoing research in the implementation of NDDS in COVID-19. Moreover it describes the role of NDDS in vaccine development for COVID-19. This paper also emphasizes how NDDS will help to develop the improved delivery systems (dosage forms) of existing therapeutic agents and also explore the new insights to find out the void spaces for a potential targeted delivery. So in these tough times, NDDS and nanotechnology can be a safeguard to humanity.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-14
Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Kiran Thakur ◽  
Tilak R. Bhardwaj ◽  
Deo N. Prasad ◽  
...  

Background: Many efforts have been explored in the last decade to treat colon cancer but nanoparticulate drug delivery systems are making a vital contribution in the improvement of drug delivery to colon cancer cells. Objective: In this review, we attempt to highlight recent advancements in the development of novel drug delivery systems of nanoparticles for the targeted drug delivery to colon. Polymers like Epithelial Cell Adhesion Molecule (EpCAM) aptamer chitosan, Hyaluronic Acid (HA), Chitosan (CS)– Carboxymethyl Starch (CMS), silsesquioxane capped mesoporous silica, Near IR (NIR) fluorescent Human Serum Albumin (HAS), poly(ethylene glycol)-conjugated hyaluronic acid etc. have been discussed by employing various anticancer drugs like doxorubicin, oxaliplatin, paclitaxel, 5-fluorouracil etc. Conclusion: These novel drug delivery systems have been determined to be more efficacious in terms of stability, sustained and targeted drug delivery, therapeutic efficacy, improved bioavailability and enhanced anticancer activity.


2020 ◽  
Vol 10 ◽  
Author(s):  
Sapna Saini ◽  
Sanju Nanda ◽  
Anju Dhiman

: Chitosan, a natural biodegradable polymer obtained from deacetylation of chitin, has been used as an approbative macromolecule for the development of various novel drug delivery systems. It is one of the most favorable biodegradable carriers for nanoparticulate drug delivery due to its intrinsic properties, such as biocompatibility, biodegradability, non-toxicity, availability of free reactive amino groups, and ease of chemical modification into different active derivatives. Furthermore, interesting physical properties (film-forming, gelling and thickening) make it a suitable candidate for formulations, such as films, microcapsules, beads, nanoparticles, nanofibres, nanogel and so on. Researchers have reported that chitosan nanoparticles act as a promising vehicle for herbal actives as they provide a superior alternative to traditional carriers and improve pharmaceutical efficiency. As no review of chitosan nanoparticles encapsulating herbal extracts and bioactives has been published till date, a maiden effort has been made to collate and review the use of chitosan nanoparticles for the entrapment of phytoconstituents to yield stable, efficient and safe drug delivery systems. Additionally, the paper presents a comprehensive account of the state-of the-art in fabricating herbal chitosan nanoparticles and their current pharmacological status. A list of patents on chitosan nanoparticles of herbal actives has also been included. This review is intended to serve as a didactic discourse for the formulation scientists endeavoring to develop advanced delivery systems for herbal actives.


Sign in / Sign up

Export Citation Format

Share Document