Recent advances in Fe-MOF compositions for in biomedical applications

2021 ◽  
Vol 28 ◽  
Author(s):  
Yuyu Zhong ◽  
Weicong Liu ◽  
Congying Rao ◽  
Baohong Li ◽  
Xiaoxiong Wang ◽  
...  

Background: To date, a number of new and attractive materials have been applied in drug delivery systems (DDDs) to improve the efficiency of the treatment of cancers. Some problems like low stability, toxicity, and weak ability of targeting have hampered most of the materials for further applications in biomedicine. MIL(MIL = Materials of Institute Lavoisier), as a typical subclass of metal-organic frameworks (MOFs), owns more advantages than other subclass MOFs, such as better biodegradability and lower cytotoxicity. However, until now, systematic conclusions and analyses of Fe-based MIL on medical applications are rare, even though the majority of documents have discussed one research branch of the porous materials MOFs. Discussion: In this review, we're going to focus mainly on the latest studies of applications, including bioimaging, biosensing, and antibacterial and drug delivery on Fe-based MIL. The existing shortcomings and future perspectives of the rapidly growing biomedical applications of Fe-based MIL materials addressing dosage and loading strategies issues are also discussed briefly.. Further studies with the use of different therapies will be of great interest. Conclusion: This article reviews the Fe-based MOFs design and biomedical application, including biosensing, bioimaging, antibacterial agent, and drug delivery in recent years.

Author(s):  
Abdollah Karami ◽  
Omnia Mohamed ◽  
Ahmed Ahmed ◽  
Ghaleb A. Husseini ◽  
Rana Sabouni

Background: Metal-organic frameworks (MOFs), as attractive hybrid crystalline porous materials, are increasingly being investigated in biomedical applications owing to their exceptional properties, including high porosity, ultrahigh surface areas, tailorable composition and structure, and tunability and surface functionality. Of interest in this review is the design and development of MOFbased drug delivery systems (DDSs) that have excellent biocompatibility, good stability under physiological conditions, high drug loading capacity, and controlled/targeted drug release. Objective: This review highlights the latest advances in MOFs as anticancer drug delivery systems (DDSs) along with insights on their design, fabrication, and performance under different stimuli that are either internal or external. The synthesis methods of MOFs, along with their advantages and disadvantages, are briefly discussed. The emergence of multifunctional MOF-based theranostic platforms is also discussed. Finally, the future challenges facing the developments of MOFs in the field of drug delivery are discussed. Methods: The review was prepared by carrying out a comprehensive literature survey using relevant work published in various scientific databases. Results: Novel MOFs in biomedical applications, especially in drug delivery, have shown great potentials. MOF-based DDSs can be classified into normal (non-controllable) DDSs, stimuli-responsive DDSs, and theranostic platforms. The normal DDSs are pristine MOFs loaded with MOFs and offer little to no control over the drug delivery. Stimuli-responsive DDSs offer better spatiotemporal control over the drug release by responding to either endogenous (pH, redox, ions, ATP) or exogenous stimuli (light, magnetism, US, pressure, temperature). The theranostic platforms combine stimuli-responsive drug delivery with diagnostic imaging functionality, paving the road for imaging-guided drug delivery. Conclusion: This review presented a summary of the various methods utilized in MOF synthesis along with the advantages and disadvantages of each method. Furthermore, the review highlighted and discussed the latest developments in the field of MOF-based DDSs and theranostic platforms. The review is focused on the characteristics of MOF-based DDSs, the encapsulation of different anticancer drugs as well as their stimuli-responsive release.


2021 ◽  
Author(s):  
Monir Falsafi ◽  
Amir Shokooh Saljooghi ◽  
Khalil Abnous ◽  
Seyed Mohammad Taghdisi ◽  
Mohammad Ramezani ◽  
...  

Metal–organic frameworks (MOFs), as a prominent category of hybrid porous materials constructed from metal clusters or ions plus organic linkers, have been broadly employed as controlled systems of drug delivery...


2021 ◽  
pp. 2100014
Author(s):  
Bhanu Nirosha Yalamandala ◽  
Wei‐Ting Shen ◽  
Sheng‐Hao Min ◽  
Wen‐Hsuan Chiang ◽  
Shing‐Jyh Chang ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chao Yan ◽  
Yue Jin ◽  
Chuanxiang Zhao

AbstractNanoparticles as drug delivery systems can alter the drugs' hydrophilicity to affect drug uptake and efflux in tissues. They prevent drugs from non-specifically binding with bio-macromolecules and enhance drug accumulation at the lesion sites, improving therapy effects and reducing unnecessary side effects. Metal–organic frameworks (MOFs), the typical nanoparticles, a class of crystalline porous materials via self-assembled organic linkers and metal ions, exhibit excellent biodegradability, pore shape and sizes, and finely tunable chemical composition. MOFs have a rigid molecular structure, and tunable pore size can improve the encapsulation drug's stability under harsh conditions. Besides, the surface of MOFs can be modified with small-molecule ligands and biomolecule, and binding with the biomarkers which is overexpressed on the surface of cancer cells. MOFs formulations for therapeutic have been developed to effectively respond to the unique tumor microenvironment (TEM), such as high H2O2 levels, hypoxia, and high concentration glutathione (GSH). Thus, MOFs as a drug delivery system should avoid drugs leaking during blood circulation and releasing at the lesion sites via a controlling manner. In this article, we will summary environment responsive MOFs as drug delivery systems for tumor therapy under different stimuli.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 916 ◽  
Author(s):  
Georges Chedid ◽  
Ali Yassin

Materials science has seen a great deal of advancement and development. The discovery of new types of materials sparked the study of their properties followed by applications ranging from separation, catalysis, optoelectronics, sensing, drug delivery and biomedicine, and many other uses in different fields of science. Metal organic frameworks (MOFs) and covalent organic frameworks (COFs) are a relatively new type of materials with high surface areas and permanent porosity that show great promise for such applications. The current study aims at presenting the recent work achieved in COFs and MOFs for biomedical applications, and to examine some challenges and future directions which the field may take. The paper herein surveys their synthesis, and their use as Drug Delivery Systems (DDS), in non-drug delivery therapeutics and for biosensing and diagnostics.


2012 ◽  
Vol 10 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Chun-Yi Sun ◽  
Chao Qin ◽  
Xin-Long Wang ◽  
Zhong-Min Su

2021 ◽  
Vol 33 (5) ◽  
pp. 956-962
Author(s):  
Chandan Adhikari ◽  
Rehana Farooq

Metal organic frameworks (MOFs) are one of those compounds which have drawn attention in various applications due to their several interesting properties like tunable shape, size, pore size, easy functionalization, high surface area, pore volume, etc. Metal organic frameworks due to their uniform structures, tunable porosity, wide variety and stability on various topology, geometry, dimension and chemical functions of the molecular network give a remarkable structural diversity in comparison to other porous materials. This enables scientists to handle numerous framework structures, porosity and functionality effectively. The unique structural architecture and tunable properties of MOF’s makes them an interesting hybrid material consisting of organic and inorganic materials. MOF can be randomly constructed like Lego bricks and superior in terms of versatility in comparisson to other porous materials. A number of MOFs containing a wide variety of metal e.g. zinc, copper, iron, aluminium, magnesium, chromium, zirconium, gadolinium, manganese are gaining rapid growth in commercial markets for gas storage, adsorption, separation and catalytic applications. This concise review emphasizes various synthetic methods e.g. solvothermal process, hydrothermal synthesis, electrochemical synthesis, microwave synthesis, sonochemical synthesis, mechanochemical synthesis, of metal organic framework developed in the last few decades. It also addresses various applications of metal organic framework e.g. hydrogen storage, gas adsorption, drug delivery systems and bioimaging agents, biocatalysts, biosensors, electrochemical sensors, etc. It also comments on various challenges and futuristic applications of metal organic frameworks in various field e.g. liquid wate management, gaseous waste management, sunlight assisted catalysis, water purification, building materials, electronic devices, battery technologies, targeted drug delivery, solar cells, etc. of science and technology in coming decades.


Author(s):  
Xin MA ◽  
Mathilde Lepoitevin ◽  
Christian SERRE

This mini review summarises the progress in the field of MOFs and their use in biomedical applications, from their early discovery and conception, to more recent achievements including promising in...


2020 ◽  
Vol 27 (35) ◽  
pp. 5949-5969 ◽  
Author(s):  
Jian Cao ◽  
Xuejiao Li ◽  
Hongqi Tian

Background: Developing a controllable drug delivery system is imperative and important to reduce side effects and enhance the therapeutic efficacy of drugs. Metal-organic frameworks (MOFs) an emerging class of hybrid porous materials built from metal ions or clusters bridged by organic linkers have attracted increasing attention in the recent years owing to the unique physical structures possessed, and the potential for vast applications. The superior properties of MOFs, such as well-defined pore aperture, tailorable composition and structure, tunable size, versatile functionality, high agent loading, and improved biocompatibility, have made them promising candidates as drug delivery hosts. MOFs for drug delivery is of great interest and many very promising results have been found, indicating that these porous solids exhibit several advantages over existing systems. Objective: This review highlights the latest advances in the synthesis, functionalization, and applications of MOFs in drug delivery, and has classified them using drug loading strategies. Finally, challenges and future perspectives in this research area are also outlined.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ailing Feng ◽  
Yanni Wang ◽  
Jinzi Ding ◽  
Rong Xu ◽  
Xiaodong Li

Background: Development of controlled drug delivery systems can improve the pharmacokinetic characteristics of drug molecules in the human body, thereby significantly improving the utilization rate of drugs and reducing toxicity and side effects caused by high concentrations of drugs, which can occur when delivery is not controlled. Metal organic frameworks are a new class of very promising crystalline microporous materials, especially when the size is reduced to the nanometer range. Metal organic frameworks exhibit large specific surface areas, tunable compositions, and easy functionalization. In recent years, increasing number of studies have reported the remarkable advances in multifunctional nanoscale metal organic frameworks in drug delivery. Objective: Review the latest research involving advances in stimuli-responsive nanoscale metal organic frameworks as drug delivery systems in controlled-release drugs. Discussion: We first introduce the two main strategies associated with nanoscale metal organic frameworks used in drug loading: direct assembly and post-encapsulation. We next focus on the latest discoveries of nanoscale metal organic framework-based stimulus response systems for drug delivery, including pH, magnetics, light, ion, temperature, and other stimuli, as well as multiple stimulus-responsive drug delivery systems. Finally, we discuss the challenges and future development directions of nanoscale metal organic framework-based controlled drug release.


Sign in / Sign up

Export Citation Format

Share Document