Oncolytic Virotherapy for Malignant Tumor: Current Clinical Status

2020 ◽  
Vol 25 (40) ◽  
pp. 4251-4263 ◽  
Author(s):  
Yuhui Zhang ◽  
Zhuoming Liu

Oncolytic viruses, as novel biological anti-tumor agents, provide anti-tumor therapeutic effects by different mechanisms including directly selective tumor cell lysis and secondary systemic anti-tumor immune responses. Some wide-type and genetically engineered oncolytic viruses have been applied in clinical trials. Among them, T-Vec has a significant therapeutic effect on melanoma patients and received the approval of the US Food and Drug Administration (FDA) as the first oncolytic virus to treat cancer in the US. However, the mechanisms of virus interaction with tumor and immune systems have not been clearly elucidated and there are still no “gold standards” for instructions of virotherapy in clinical trials. This Review collected the recent clinical trials data from 2005 to summarize the basic oncolytic viruses biology, describe the application in recent clinical trials, and discuss the challenges in the application of oncolytic viruses in clinical trials.

2007 ◽  
Vol 25 (26) ◽  
pp. 4090-4095 ◽  
Author(s):  
Sunil J. Advani ◽  
Ralph R. Weichselbaum ◽  
Steven J. Chmura

Concurrent radiotherapy and chemotherapy have been used to treat a variety of tumors to improve local control and overall survival. Gene therapy strategies represent a novel means to further improve the therapeutic ratio of ionizing radiation. Cancer gene therapy strategies in clinical trials include the use of replication-defective shuttle vectors to deliver exogenous genes and replication-competent oncolytic viruses. This review focuses on these approaches in the context of radiotherapy and radiochemotherapy. In the shuttle vector approach, exogenous gene products that enhance ionizing radiation–mediated tumor cell destruction have been selected. Moreover, the expression of exogenous genes encoding therapeutic proteins can be regulated through the use of ionizing radiation–enhanced promoters. Also, genetically engineered attenuated replication-competent viruses have been investigated in clinical trials. Preclinical data indicate that ionizing radiation interacts with replication-competent oncolytic viruses to enhance viral replication and tumor destruction. Here, we review the background preclinical and current clinical data utilizing gene therapy with radiotherapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 419
Author(s):  
Shyambabu Chaurasiya ◽  
Yuman Fong ◽  
Susanne G. Warner

Oncolytic viruses are a new class of therapeutics which are largely in the experimental stage, with just one virus approved by the FDA thus far. While the concept of oncolytic virotherapy is not new, advancements in the fields of molecular biology and virology have renewed the interest in using viruses as oncolytic agents. Backed by robust preclinical data, many oncolytic viruses have entered clinical trials. Oncolytic viruses that have completed some levels of clinical trials or are currently undergoing clinical trials are mostly genetically engineered viruses, with the exception of some RNA viruses. Reolysin, an unmodified RNA virus is clinically the most advanced oncolytic RNA virus that has completed different phases of clinical trials. Other oncolytic viruses that have been studied in clinical trials are mostly DNA viruses that belong to one of the three families: herpesviridae, poxviridae or adenoviridae. In this review work we discuss recent clinical studies with oncolytic viruses, especially herpesvirus, poxvirus, adenovirus and reovirus. In summary, the oncolytic viruses tested so far are well tolerated, even in immune-suppressed patients. For most oncolytic viruses, mild and acceptable toxicities are seen at the currently defined highest feasible doses. However, anti-tumor efficacies of oncolytic viruses have been modest, especially when used as monotherapy. Therefore, the potency of oncolytic viruses needs to be enhanced for more oncolytic viruses to hit the clinic. Aiming to achieve higher therapeutic benefits, oncolytic viruses are currently being studied in combination with other therapies. Here we discuss the currently available clinical data on oncolytic viruses, either as monotherapy or in combination with other treatments.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii24-ii25
Author(s):  
Amanda Immidisetti ◽  
Sean Munier ◽  
Nitesh Patel

Abstract BACKGROUND High-grade gliomas (HGG) pose therapeutic challenges stemming from blood brain barrier, infiltrative growth, suppressed immune function, and tumor heterogeneity. Oncolytic viruses (OVs) are gaining traction for addressing these challenges. There is evidence that the SARS-CoV-2 glycoprotein spike binds the ACE-2 receptor in nasal epithelium and reaches the brainstem and thalamus via axonal transport through the olfactory pathway, making it an attractive candidate for OV therapy. Prior studies on chimerization of pathogenic virus-derived glycoprotein spikes with non-pathogenic strains exploit neurotropism of a wild-type virus while improving the safety profile of the resulting OV. We review, 1) the engineering of chimeric OVs used in the treatment of HGG; 2) potential for a novel chimeric virotherapy in which the SARS-CoV-2 glycoprotein spike can be used to deliver OV therapy intranasally; and 3) areas which warrant further investigation to develop this approach for clinical use. METHODS We performed an extensive review of chimeric OVs and specific modifications engineered to optimize safety and efficacy. Additionally, we assessed potential to use these principals to engineer the SARS-CoV-2 glycoprotein spike onto a non-pathogenic, replication competent virus to yield a novel chimeric for noninvasive, intranasal delivery. RESULTS Viruses with pathogenic properties in wild-type have been successfully used as components of OVs and have demonstrated potential in both preclinical and clinical trials. Outcomes show that despite wild-type virulence, notable toxicities were not observed in clinical trials, highlighting the potential of viral pseudotyping as a safe therapeutic approach. CONCLUSIONS The proposed method to utilize the SARS-CoV-2 glycoprotein in a novel chimeric poses advantages including 1) potential for non-invasive delivery, 2) therapy without need for maximal or uniform tumor coverage due to replication competence, 3) ability to reach infiltrative glioma cells, 4) potential to reach the brainstem, and 5) stimulation of host immunity through tumor cell lysis and antigen presentation


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Shengye Jin ◽  
Qin Wang ◽  
Hao Wu ◽  
Da Pang ◽  
Shouping Xu

AbstractBiological therapy is considered an alternative treatment capable of eliciting the same effects on tumors as surgery, radiotherapy, and chemotherapy. As a major player in biological therapy, oncolytic viruses (OVs) have attracted great attention and achieved good results. Specifically, the successful application of OVs in head and neck cancer, as well as melanoma, promoted its research in triple negative breast cancer (TNBC). TNBC is a high-risk molecular type of breast cancer, characterized by strong invasion, easy recurrence, and metastasis. Due to the absence of estrogen and progesterone receptors, as well as the absence of overexpression or gene amplification of human epidermal growth factor receptor 2 (HER2), endocrine therapy and anti HER-2 targeted therapy have proven ineffective. Although chemotherapy has shown substantial efficacy in some TNBC patients, the occurrence of drug resistance and poor prognosis have prompted the exploration of new and effective treatment methods. The emerging concept of OVs provides a new platform to treat TNBC. Indeed, several studies have confirmed the therapeutic effects of OVs in TNBC. Numerous studies have also investigated the efficacy of OVs in other malignances, including solid tumor clinical trials, thus further demonstrating the promising application of oncolytic virotherapy for TNBC. The primary focus of the current review is the examination of OV mechanisms underlying their antitumor properties, while also summarizing the ongoing progress in OV research regarding TNBC treatment, as well as the various combinatorial strategies comprising OVs and other therapies. We also briefly introduce specific relevant clinical trials and discuss some of the progress in the research of novel OVs for the treatment of other malignancies, thereby affirming the significant therapeutic potential of OVs for the treatment of TNBC, as well as other cancers.


2020 ◽  
Vol 26 ◽  
Author(s):  
Felix-Martin Werner ◽  
Rafael Coveñas

Background: Schizophrenia and schizoaffective disorder are treated with antipsychotic drugs. Some patients show treatment-resistant forms of psychotic disorders and, in this case, they can be treated with clozapine. In these patients and based on previous reviews on novel antipsychotic drugs, it is important to know whether an add-on therapy with new drugs can ameliorate the positive and negative schizophrenic scale (PANSS) total score. Objective: The aim of this review is to suggest an appropriate treatment for patients with treatment-resistant forms of psychotic disorders. A combination of current available antipsychotic drugs with novel antipsychotic or modulating drugs might improve negative schizophrenic symptoms and cognitive function and thereby social functioning and quality of life. Results: The mechanisms of action, the therapeutic effects and the pharmacokinetic profiles of novel antipsychotic drugs such as cariprazine, brexipiprazole and lumateperone are up-dated. Published case reports of patients with treatmentresistant psychoses are also discussed. These patients were treated with clozapine but a high PANSS total score was observed. Only an add-on therapy with cariprazine improved the score and, above all, negative schizophrenic symptoms and cognitive functions. To ensure a constant antipsychotic drug concentration, long-acting injectable antipsychotic drugs may be a choice for a maintenance therapy in schizophrenia. New modulating drugs, such as receptor positive allosteric modulators (N-methyl-D-aspartate receptor; subtype 5 of the metabotropic glutamatergic receptor) and encenicline, an alpha7 nicotinic cholinergic receptor agonist, are being investigated in preclinical and clinical trials. Conclusion: In clinical trials, patients with treatment-resistant forms of psychosis should be examined to know whether a combination therapy with clozapine and a novel antipsychotic drug can ameliorate the PANSS total score. In schizophrenia, long-acting injectable antipsychotic drugs are a safe and tolerable maintenance therapy. In further clinical studies, it should be investigated whether patients with treatment-resistant forms of psychoses can improve negative schizophrenic symptoms and cognitive functions by an add-on therapy with cognition enhancing drugs.


2019 ◽  
Vol 19 (3) ◽  
pp. 172-196 ◽  
Author(s):  
Ling-Yan Zhou ◽  
Zhou Qin ◽  
Yang-Hui Zhu ◽  
Zhi-Yao He ◽  
Ting Xu

Long-term research on various types of RNAs has led to further understanding of diverse mechanisms, which eventually resulted in the rapid development of RNA-based therapeutics as powerful tools in clinical disease treatment. Some of the developing RNA drugs obey the antisense mechanisms including antisense oligonucleotides, small interfering RNAs, microRNAs, small activating RNAs, and ribozymes. These types of RNAs could be utilized to inhibit/activate gene expression or change splicing to provide functional proteins. In the meantime, some others based on different mechanisms like modified messenger RNAs could replace the dysfunctional endogenous genes to manage some genetic diseases, and aptamers with special three-dimensional structures could bind to specific targets in a high-affinity manner. In addition, the recent most popular CRISPR-Cas technology, consisting of a crucial single guide RNA, could edit DNA directly to generate therapeutic effects. The desired results from recent clinical trials indicated the great potential of RNA-based drugs in the treatment of various diseases, but further studies on improving delivery materials and RNA modifications are required for the novel RNA-based drugs to translate to the clinic. This review focused on the advances and clinical studies of current RNA-based therapeutics, analyzed their challenges and prospects.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1073
Author(s):  
Juan-Carlos Saiz

West Nile virus (WNV) is a widely distributed enveloped flavivirus transmitted by mosquitoes, which main hosts are birds. The virus sporadically infects equids and humans with serious economic and health consequences, as infected individuals can develop a severe neuroinvasive disease that can even lead to death. Nowadays, no WNV-specific therapy is available and vaccines are only licensed for use in horses but not for humans. While several methodologies for WNV vaccine development have been successfully applied and have contributed to significantly reducing its incidence in horses in the US, none have progressed to phase III clinical trials in humans. This review addresses the status of WNV vaccines for horses, birds, and humans, summarizing and discussing the challenges they face for their clinical advance and their introduction to the market.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 270
Author(s):  
Rachel L. Washburn ◽  
Karl Mueller ◽  
Gurvinder Kaur ◽  
Tanir Moreno ◽  
Naima Moustaid-Moussa ◽  
...  

Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.


Sign in / Sign up

Export Citation Format

Share Document