scholarly journals Aldose reductase: new insights for an old enzyme

2011 ◽  
Vol 2 (1-2) ◽  
pp. 103-114 ◽  
Author(s):  
Kota V. Ramana

AbstractIn the past years aldose reductase (AKR1B1; AR) is thought to be involved in the pathogenesis of secondary diabetic complications such as retinopathy, neuropathy, nephropathy and cataractogenesis. Subsequently, several AR inhibitors have been developed and tested for diabetic complications. Although these inhibitors have found to be safe for human use, they have not been successful in clinical studies because of limited efficacy. Recently, the potential physiological role of AR has been reassessed from a different point of view. Diverse groups suggested that AR, in addition to reducing glucose, also efficiently reduces oxidative stress-generated lipid peroxidation-derived aldehydes and their glutathione conjugates. Because lipid aldehydes alter cellular signals by regulating the activation of transcription factors such as NF-κB and AP1, inhibition of AR could inhibit such events. Indeed, a wide array of recent experimental evidence indicates that the inhibition of AR prevents oxidative stress-induced activation of NF-κB and AP1 signals that lead to cell death or growth. Furthermore, AR inhibitors have been shown to prevent inflammatory complications such as sepsis, asthma, colon cancer and uveitis in rodent animal models. The new experimental in vitro and in vivo data has provided a basis for investigating the clinical efficacy of AR inhibitors in preventing other inflammatory complications than diabetes. This review describes how recent studies have identified novel plethoric physiological and pathophysiological significance of AR in mediating inflammatory complications, and how the discovery of such new insights for this old enzyme could have considerable importance in envisioning potential new therapeutic strategies for the prevention or treatment of inflammatory diseases.

2020 ◽  
Vol 26 (22) ◽  
pp. 2610-2619 ◽  
Author(s):  
Tarique Hussain ◽  
Ghulam Murtaza ◽  
Huansheng Yang ◽  
Muhammad S. Kalhoro ◽  
Dildar H. Kalhoro

Background: Inflammation is a complex response of the host defense system to different internal and external stimuli. It is believed that persistent inflammation may lead to chronic inflammatory diseases such as, inflammatory bowel disease, neurological and cardiovascular diseases. Oxidative stress is the main factor responsible for the augmentation of inflammation via various molecular pathways. Therefore, alleviating oxidative stress is effective a therapeutic option against chronic inflammatory diseases. Methods: This review article extends the knowledge of the regulatory mechanisms of flavonoids targeting inflammatory pathways in chronic diseases, which would be the best approach for the development of suitable therapeutic agents against chronic diseases. Results: Since the inflammatory response is initiated by numerous signaling molecules like NF-κB, MAPK, and Arachidonic acid pathways, their encountering function can be evaluated with the activation of Nrf2 pathway, a promising approach to inhibit/prevent chronic inflammatory diseases by flavonoids. Over the last few decades, flavonoids drew much attention as a potent alternative therapeutic agent. Recent clinical evidence has shown significant impacts of flavonoids on chronic diseases in different in-vivo and in-vitro models. Conclusion: Flavonoid compounds can interact with chronic inflammatory diseases at the cellular level and modulate the response of protein pathways. A promising approach is needed to overlook suitable alternative compounds providing more therapeutic efficacy and exerting fewer side effects than commercially available antiinflammatory drugs.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1210
Author(s):  
Amy K. Hauck ◽  
Tong Zhou ◽  
Ambuj Upadhyay ◽  
Yuxiang Sun ◽  
Michael B. O’Connor ◽  
...  

Oxidative stress is a hallmark of metabolic disease, though the mechanisms that define this link are not fully understood. Irreversible modification of proteins by reactive lipid aldehydes (protein carbonylation) is a major consequence of oxidative stress in adipose tissue and the substrates and specificity of this modification are largely unexplored. Here we show that histones are avidly modified by 4-hydroxynonenal (4-HNE) in vitro and in vivo. Carbonylation of histones by 4-HNE increased with age in male flies and visceral fat depots of mice and was potentiated in genetic (ob/ob) and high-fat feeding models of obesity. Proteomic evaluation of in vitro 4-HNE- modified histones led to the identification of both Michael and Schiff base adducts. In contrast, mapping of sites in vivo from obese mice exclusively revealed Michael adducts. In total, we identified 11 sites of 4-hydroxy hexenal (4-HHE) and 10 sites of 4-HNE histone modification in visceral adipose tissue. In summary, these results characterize adipose histone carbonylation as a redox-linked epigenomic mark associated with metabolic disease and aging.


2007 ◽  
Vol 7 ◽  
pp. 421-430 ◽  
Author(s):  
Matthew C. Catley

Glucocorticoids (GCs) are some of the most important drugs in clinical use today. They are mainly used to suppress disease-related inflammation and are widely used for the treatment of many inflammatory diseases including asthma and arthritis. However, GCs are also associated with debilitating side effects that place limitations on the long-term use of these drugs. The development of a GC with reduced side effects would allow more effective treatments for patients who require long-term suppression of inflammation. GCs exert their effects by binding and activating the GC receptor (GR). The activated receptor then binds GC response elements (GREs) in the promoter of genes, and activates transcription (transactivation) or interferes with the activation of transcription by inhibiting the transactivating function of other transcription factors, such as AP-1 and NF-ĸB (transrepression). Transrepression is believed to be responsible for the majority of the beneficial anti-inflammatory effects of GCs, whereas transactivation is believed to play a bigger role in the unwanted side effects of GCs. Compounds that can dissociate the transactivation function of GCs from the transrepression function may, therefore, have an improved therapeutic index. A number of these dissociated corticosteroids have been developed.In vitroassays using these compounds appear to show good dissociation. However,in vivo, the dissociation appears to be lost and these compounds still produce many of the side effects associated with conventional GCs. A better understanding of the molecular mechanisms behind GC-induced effects would allow the design of novel selective GR modulators with an improved therapeutic index.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Aimin Liu ◽  
Wei Zhao ◽  
Buxin Zhang ◽  
Yuanhui Tu ◽  
Qingxing Wang ◽  
...  

Abstract Cimifugin is an important component of chromones in the dry roots of Saposhikovia divaricata for treating inflammatory diseases. However, the possible effect of cimifugin in psoriasis needs further investigation. This current work was designed to evaluate the effects of cimifugin in psoriasis in vivo and in vitro, and unravel the underlying molecular mechanism. Here, we used imiquimod (IMQ) or tumor necrosis factor (TNF)-α to induce a psoriasis-like model in mice or keratinocytes. Obviously, the results showed that cimifugin reduced epidermal hyperplasia, psoriasis area severity index (PASI) scores, ear thickness and histological psoriasiform lesions in IMQ-induced mice. The decreased levels of reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), and the accumulation of malondialdehyde (MDA) in skin tissues by IMQ were attenuated by cimifugin. Furthermore, it was observed that cimifugin effectively reversed IMQ-induced up-regulation of proinflammatory cytokines, including TNF-α, IL-6, IL-1β, IL-17A, and IL-22. Mechanically, we noticed that cimifugin inhibited IMQ-activated phosphorylation of NF-κB (IκB and p65) and MAPK (JNK, ERK, and p38) signaling pathways. Similar alterations for oxidative stress and inflammation parameters were also detected in TNF-α-treated HaCaT cells. In addition, cimifugin-induced down-regulation of ICAM-1 were observed in TNF-α-treated cells. Altogether, our findings suggest that cimifugin protects against oxidative stress and inflammation in psoriasis-like pathogenesis by inactivating NF-κB/MAPK signaling pathway, which may develop a novel and effective drug for the therapy of psoriasis.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Yuwei Zhao ◽  
Jing Gao ◽  
Yarong Zhang ◽  
Xueqi Gan ◽  
Haiyang Yu

In some inflammatory diseases of bone, osteogenesis and osteoclasis are uncoupled and the balance is usually tipped resulting in bone destruction. The underlying mechanism of osteogenic dysfunction in inflammation still needs further study. This study is aimed at investigating the effects of cyclosporine A (CsA) on bone remodeling in lipopolysaccharide- (LPS-) related inflammation. In vivo, an alveolar bone defect model was established using 10-week-old C57BL/6J mice. The mice were divided into phosphate-buffered saline (PBS), LPS, and LPS+CsA groups. After 3 weeks, micro-CT analysis and histomorphometric evaluation were conducted. In vitro, murine osteoblasts were treated with vehicle medium, LPS, LPS+CsA, LPS+extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor (LPS+PD98059), and LPS+antioxidant (LPS+EUK134). Cell proliferation, osteogenic behaviors, oxidative stress, and ERK signaling were determined. By these approaches, LPS inhibited bone remodeling and promoted oxidative stress accumulation in alveolar bone defects. When animals were treated with CsA, all LPS-induced biochemical changes ameliorated with a marked protective effect. In vitro, the reactive oxygen species (ROS) levels in mitochondria increased in LPS-treated osteoblasts, with decreased expression of osteogenic differentiation genes. The CsA, PD98059, and EUK134 presented remarkable protective effects against LPS treatment. CsA effectively enhanced bone remodeling and attenuated oxidative stress caused by LPS via inhibiting ROS/ERK signaling. Taken together, the protective effect of CsA and the inhibitory effect of ERK signaling on the maintenance of mitochondrial function and reduction of ROS levels hold promise as a potential novel therapeutic strategy for inflammatory diseases in bones.


2019 ◽  
Vol 25 (2) ◽  
pp. 132-137
Author(s):  
Hamed Parsa Khankandi ◽  
Sahar Behzad ◽  
Shamim Sahranavard ◽  
Mina Rezvani ◽  
Naghmeh Tadris Hasani

Background: Nitric oxide and reactive nitrogen species play an important role in various pathological conditions like cancer, inflammation and neurodegeneration. As plants and natural compounds have a great potency of discovering lead compounds which might affect NO production during inflammation and various pathologies, we examined the effects of three medicinal plants native to Iran, on NO production during oxidative stress in PC12 cells. Methods: In this study, cell death and NO levels were measured by MTT and by Griess assay, respectively. Oxidative stress was induced by hydrogen peroxide and extracts of Astragalus jolderensis, Convolvulus commutatus and Salvia multicaulis were used as pretreatment in oxidative stressed PC12 cells. Results: A. jolderensis extract significantly suppressed NO production in 150 and 200 μg/ml concentrations and C. commutatus extract in all concentration inhibited NO production in stressed PC12 cells. In addition, the extract of S. multicaulis inhibited NO production during stress at all concentrations above 50 μg/ml. Besides, the extract of S. multicaulis showed protective effect at lower doses in stressed cells. Conclusion: According to the results, S. multicaulis inhibited NO production and protected cells from oxidative stress. Hence, S. multicaulis is a good candidate for further in vitro and in vivo investigations. A. jolderensis and C. commutatus also suppressed NO production during stress. Therefore, they could be noticed in experiments that centralize on the inhibition of NO production and drug discovery studies in the field of neurodegenerative and chronic inflammatory diseases.


2019 ◽  
Vol 24 (39) ◽  
pp. 4626-4638 ◽  
Author(s):  
Reyhaneh Moradi-Marjaneh ◽  
Seyed M. Hassanian ◽  
Farzad Rahmani ◽  
Seyed H. Aghaee-Bakhtiari ◽  
Amir Avan ◽  
...  

Background: Colorectal cancer (CRC) is one of the most common causes of cancer-associated mortality in the world. Anti-tumor effect of curcumin has been shown in different cancers; however, the therapeutic potential of novel phytosomal curcumin, as well as the underlying molecular mechanism in CRC, has not yet been explored. Methods: The anti-proliferative, anti-migratory and apoptotic activity of phytosomal curcumin in CT26 cells was assessed by MTT assay, wound healing assay and Flow cytometry, respectively. Phytosomal curcumin was also tested for its in-vivo activity in a xenograft mouse model of CRC. In addition, oxidant/antioxidant activity was examined by DCFH-DA assay in vitro, measurement of malondialdehyde (MDA), Thiol and superoxidedismutase (SOD) and catalase (CAT) activity and also evaluation of expression levels of Nrf2 and GCLM by qRT-PCR in tumor tissues. In addition, the effect of phytosomal curcumin on angiogenesis was assessed by the measurement of VEGF-A and VEGFR-1 and VEGF signaling regulatory microRNAs (miRNAs) in tumor tissue. Results: Phytosomal curcumin exerts anti-proliferative, anti-migratory and apoptotic activity in-vitro. It also decreases tumor growth and augmented 5-fluorouracil (5-FU) anti-tumor effect in-vivo. In addition, our data showed that induction of oxidative stress and inhibition of angiogenesis through modulation of VEGF signaling regulatory miRNAs might be underlying mechanisms by which phytosomal curcumin exerted its antitumor effect. Conclusion: Our data confirmed this notion that phytosomal curcumin administrates anticancer effects and can be used as a complementary treatment in clinical settings.


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


Sign in / Sign up

Export Citation Format

Share Document