Tetrazoloquinolines: Synthesis, Reactions, and Applications

2020 ◽  
Vol 24 (4) ◽  
pp. 439-464 ◽  
Author(s):  
Rizk E. Khidre ◽  
Tahah A. Ameen ◽  
Mounir A. I. Salem

This review summarizes the synthesis, reactions, and biological activities of tetrazolo[1,5-a]quinoline derivatives. These derivatives were synthesized by several methods such as i) from the reaction of 2-chloroquinoline with sodium azide ii) from diazotization 2-hydrazinylquinoline derivatives, and iii) from intramolecular cyclocondensation of 2-azidoarylidenes. Also, the chemical reactions and pharmacological activities of some tetrazoloquinolines such as tetrazolo[1,5-a]quinoline-4-carbaldehyde, 5-chlorotetrazolo[ 1,5-a]quinoline, 4-(chloromethyl)tetrazolo[1,5-a]quinoline, tetrazolo[1,5- a]quinoline-4-carboxylic acid, and 5-azidotetrazolo[1,5-a]quinoline were discussed.

2020 ◽  
Vol 24 (15) ◽  
pp. 1669-1716 ◽  
Author(s):  
Thoraya A. Farghaly ◽  
Sami A. Al-Hussain ◽  
Zeinab A. Muhammad ◽  
Magda A. Abdallah ◽  
Magdi E. A. Zaki

Perimidines are peri-naphtho-fused derivatives of pyrimidine. They are of particular interest as they are a rare example of an azine in which the lone pair of electrons of pyrrole-like nitrogen participates in the π-system of the molecule. Perimidine is an interesting class of heterocyclic compounds. Various synthetic analogs of perimidines have been prepared and evaluated for many pharmacological activities in different models with desired findings. They exhibit biological activities as antitumor, antiulcer, antimicrobial, and antifungal agents. This review is an attempt to organize the synthesis and chemical reactions of perimidine analogs reported to date systematically since 1955. It should be noted that this review is the first one that includes the preparation and reactions of the perimidine ring.


2021 ◽  
Vol 3 (3) ◽  
pp. 3-6
Author(s):  
Bhushan D Varpe ◽  
Gajanan Gavande ◽  
Amol Lavate ◽  
Vaibhav Dhakane ◽  
Dnyaneshwar Jagtap ◽  
...  

Quinoline and derivatives of Benzimidazole are widely studied for their different activities. One of the essential classes of anti-malarial and anti-bacterial treatment is the quinoline derivatives. Quinoline and Benzimidazole are flexible lead molecules used to model the future molecules of drugs. The present review outlines the potential pharmacological activities of quinoline and Benzimidazole derivatives.


2020 ◽  
Vol 17 ◽  
Author(s):  
Rukhsana Tabassum ◽  
Muhammad Ashfaq ◽  
Hiroyuki Oku

Abstract:: Synthesis of heterocyclic compounds containing quinoline scaffold attracted a significant attention of organic chemists due to their importance as therapeutic agent in pharmaceutical industry. Quinolone molecule exhibit extensive biological activities a few of which are antiviral, anti-inflammatory antibacterial, antifungal, antiproliferative, anthelmintic and anticonvulsant. A variety of synthetic routes has been developed for construction compounds bearing quinoline nucleus due to its broad spectrum of pharmacological activities. This review describes recent development in transition metal mediated synthetic protocols of these important heterocycles by formation of quinoline ring or by substitution of quinoline rings including both modified conventional name reactions and novel routes with highly functionalized quinoline products.


2013 ◽  
Vol 347 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Fatma K. Abdel-Wadood ◽  
Maisa I. Abdel-Monem ◽  
Atiat M. Fahmy ◽  
Ahmed A. Geies

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yan-Xi Zhou ◽  
Wei Xia ◽  
Wei Yue ◽  
Cheng Peng ◽  
Khalid Rahman ◽  
...  

Rhein (4, 5-dihydroxyanthraquinone-2-carboxylic acid) is a lipophilic anthraquinone extensively found in medicinal herbs, such asRheum palmatumL.,Cassia toraL.,Polygonum multiflorumThunb., andAloe barbadensisMiller, which have been used medicinally in China for more than 1,000 years. Its biological activities related to human health are being explored actively. Emerging evidence suggests that rhein has many pharmacological effects, including hepatoprotective, nephroprotective, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities. The present review provides a comprehensive summary and analysis of the pharmacological properties of rhein, supporting the potential uses of rhein as a medicinal agent.


2020 ◽  
Vol 23 (21) ◽  
pp. 2271-2294 ◽  
Author(s):  
Divya Utreja ◽  
Shivali Sharma ◽  
Akhil Goyal ◽  
Komalpreet Kaur ◽  
Sonia Kaushal

Heterocyclic chemistry is the only branch of chemistry that has applications in varied areas such as dyes, photosensitizers, coordination compounds, polymeric materials, biological, and many other fields. Quinoline and its derivatives have always engrossed both synthetic chemists and biologists because of their diverse chemical and pharmacological properties as these ring systems can be easily found in various natural products, especially in alkaloids. Among alkaloids, quinoline derivatives i.e. quinolinium salts have attracted much attention nowadays owing to their diverse biological profile such as antimicrobial, antitumor, antifungal, hypotensive, anti-HIV, analgesics and anti-inflammatory, etc. Quinoline and its analogs have recently been examined for their modes of function in the inhibition of tyrosine kinases, proteasome, tubulin polymerization, topoisomerase, and DNA repair. These observations have been guiding scientists for the expansion of new quinoline derivatives with improved and varied biological activities. Quinolinium salts have immense possibilities and scope to investigate these compounds as potential drug candidates. Therefore, we shall present a concise compilation of this work to aid in present knowledge and to help researchers explore an interesting quinoline class having medicinal potential.


2019 ◽  
Vol 16 (5) ◽  
pp. 709-729 ◽  
Author(s):  
Muhammad A. Rashid ◽  
Aisha Ashraf ◽  
Sahibzada S. Rehman ◽  
Shaukat A. Shahid ◽  
Adeel Mahmood ◽  
...  

Background:1,4-Diazepines are two nitrogen containing seven membered heterocyclic compounds and associated with a wide range of biological activities. Due to its medicinal importance, scientists are actively involved in the synthesis, reactions and biological evaluation of 1,4-diazepines since number of decades.Objective:The primary purpose of this review is to discuss the synthetic schemes and reactivity of 1,4- diazepines. This article also describes biological aspects of 1,4-diazepine derivatives, that can be usefully exploited for the pharmaceutical sector.Conclusion:This review summarizes the abundant literature on synthetic routes, chemical reactions and biological attributes of 1,4-diazepine derivatives. We concluded that 1,4-diazepines have significant importance due to their biological activities like antipsychotic, anxiolytic, anthelmintic, anticonvulsant, antibacterial, antifungal and anticancer. 1,4-diazepine derivatives with significant biological activities could be explored for potential use in the pharmaceutical industries.


2019 ◽  
Vol 16 (6) ◽  
pp. 568-577 ◽  
Author(s):  
Jainara Santos do Nascimento ◽  
João Carlos Silva Conceição ◽  
Eliane de Oliveira Silva

Coumarins are natural 1,2-benzopyrones, present in remarkable amounts as secondary metabolites in edible and medicinal plants. The low yield in the coumarins isolation from natural sources, along with the difficulties faced by the total synthesis, make them attractive for biotechnological studies. The current literature contains several reports on the biotransformation of coumarins by fungi, which can generate chemical analogs with high selectivity, using mild and eco-friendly conditions. Prompted by the enormous pharmacological interest in the coumarin-related compounds, their alimentary and chemical applications, this review covers the biotransformation of coumarins by filamentous fungi. The chemical structures of the analogs were presented and compared with those from the pattern structures. The main chemical reactions catalyzed the insertion of functional groups, and the impact on the biological activities caused by the chemical transformations were discussed. Several chemical reactions can be catalyzed by filamentous fungi in the coumarin scores, mainly lactone ring opening, C3-C4 reduction and hydroxylation. Chunninghamella sp. and Aspergillus sp. are the most common fungi used in these transformations. Concerning the substrates, the biotransformation of pyranocoumarins is a rarer process. Sometimes, the bioactivities were improved by the chemical modifications and coincidences with the mammalian metabolism were pointed out.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 335
Author(s):  
Xia Yan ◽  
Jing Liu ◽  
Xue Leng ◽  
Han Ouyang

Sinularia is one of the conspicuous soft coral species widely distributed in the world’s oceans at a depth of about 12 m. Secondary metabolites from the genus Sinularia show great chemical diversity. More than 700 secondary metabolites have been reported to date, including terpenoids, norterpenoids, steroids/steroidal glycosides, and other types. They showed a broad range of potent biological activities. There were detailed reviews on the terpenoids from Sinularia in 2013, and now, it still plays a vital role in the innovation of lead compounds for drug development. The structures, names, and pharmacological activities of compounds isolated from the genus Sinularia from 2013 to March 2021 are summarized in this review.


Sign in / Sign up

Export Citation Format

Share Document