Delivery and Application of Dietary Polyphenols to Target Organs, Tissues and Intracellular Organelles

2014 ◽  
Vol 15 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Masaru Ohara ◽  
Yoshihiko Ohyama
Author(s):  
Burton B. Silver ◽  
Ronald S. Nelson

Some investigators feel that insulin does not enter cells but exerts its influence in some manner on the cell surface. Ferritin labeling of insulin and insulin antibody was used to determine if binding sites of insulin to specific target organs could be seen with electron microscopy.Alloxanized rats were considered diabetic if blood sugar levels were in excess of 300 mg %. Test reagents included ferritin, ferritin labeled insulin, and ferritin labeled insulin antibody. Target organs examined were were diaphragm, kidney, gastrocnemius, fat pad, liver and anterior pituitary. Reagents were administered through the left common carotid. Survival time was at least one hour in test animals. Tissue incubation studies were also done in normal as well as diabetic rats. Specimens were fixed in gluteraldehyde and osmium followed by staining with lead and uranium salts. Some tissues were not stained.


Author(s):  
Anthony A. Paparo ◽  
Judith A. Murphy

The purpose of this study was to localize the red neuronal pigment in Mytilus edulis and examine its role in the control of lateral ciliary activity in the gill. The visceral ganglia (Vg) in the central nervous system show an over al red pigmentation. Most red pigments examined in squash preps and cryostat sec tions were localized in the neuronal cell bodies and proximal axon regions. Unstained cryostat sections showed highly localized patches of this pigment scattered throughout the cells in the form of dense granular masses about 5-7 um in diameter, with the individual granules ranging from 0.6-1.3 um in diame ter. Tissue stained with Gomori's method for Fe showed bright blue granular masses of about the same size and structure as previously seen in unstained cryostat sections.Thick section microanalysis (Fig.l) confirmed both the localization and presence of Fe in the nerve cell. These nerve cells of the Vg share with other pigmented photosensitive cells the common cytostructural feature of localization of absorbing molecules in intracellular organelles where they are tightly ordered in fine substructures.


Author(s):  
J. Borejdo ◽  
S. Burlacu

Polarization of fluorescence is a classical method to assess orientation or mobility of macromolecules. It has been a common practice to measure polarization of fluorescence through a microscope to characterize orientation or mobility of intracellular organelles, for example anisotropic bands in striated muscle. Recently, we have extended this technique to characterize single protein molecules. The scientific question concerned the current problem in muscle motility: whether myosin heads or actin filaments change orientation during contraction. The classical view is that the force-generating step in muscle is caused by change in orientation of myosin head (subfragment-1 or SI) relative to the axis of thin filament. The molecular impeller which causes this change resides at the interface between actin and SI, but it is not clear whether only the myosin head or both SI and actin change orientation during contraction. Most studies assume that observed orientational change in myosin head is a reflection of the fact that myosin is an active entity and actin serves merely as a passive "rail" on which myosin moves.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


1997 ◽  
Vol 36 (02) ◽  
pp. 71-75 ◽  
Author(s):  
S. Glatz ◽  
S. N. Reske ◽  
K. G. Grillenberger

Summary Aim: One therapeutic approach to rheumatoid arthritis and other inflammatory arthropathies besides surgical removal of inflamed synovium is radiation synovectomy using beta-emitting radionuclides to destroy the affected synovial tissue. Up to now the major problem associated with the use of labeled particles or colloids has been considerable leakage of radionuclides from the injected joint coupled with high radiation doses to liver and other non target organs. In this study we compared 188Re labeled hydroxyapatite particles and 188Re rhenium sulfur colloid for their potential use in radiation synovectomy. Methods: To this end we varied the labeling conditions (concentrations, pH-value, heating procedure) and analyzed the labeling yield, radiochemical purity, and in vitro stability of the resulting radiopharmaceutical. Results: After optimizing labeling conditions we achieved a labeling yield of more than 80% for 188Re hydroxyapatite and more than 90% for the rhenium sulfur colloid. Both of the radiopharmaceuticals can be prepared under aseptic conditions using an autoclav for heating without loss of activity. In vitro stability studies using various challenge solutions (water, normal saline, diluted synovial fluid) showed that 188Re labeled hydroxyapatite particles lost about 80% of their activity within 5 d in synovial fluid. Rhenium sulfur colloid on the other hand proved to be very stable with a remaining activity of more than 93% after 5 d in diluted synovial fluid. Conclusion: These in vitro results suggest that 188Re labeled rhenium sulfur colloid expects to be more suitable for therapeutic use in radiation synovectomy than the labeled hydroxyapatite particles.


1964 ◽  
Vol 45 (4_Suppl) ◽  
pp. S139-S153 ◽  
Author(s):  
K. Junkmann ◽  
F. Neumann

ABSTRACT Experiments are described dealing with the mechanism of action of 6-chloro-Δ6-1,2α-methylene-17α-hydroxyprogesterone-acetate with regard to its anti-masculine effect on male rat foetuses, when administered to pregnant rats. It was shown that a marked direct anti-androgenic effect due to a competitive action on androgen receptors within the target organs, is probably the explanation of the mechanism of action. It was further shown that an oestrogenic effect or an appreciable inhibition of the pituitary gland respectively, can be ruled out as causative factors in the mechanism of action.


1970 ◽  
Vol 65 (1_Suppl) ◽  
pp. S104-S121 ◽  
Author(s):  
E. E. Baulieu ◽  
J. P. Raynaud ◽  
E. Milgrom

ABSTRACT A brief review of the characteristics of steroid binding proteins found in the plasma and in some target organs is presented, followed by some general remarks on binding »specificity« and binding parameters. Useful techniques for measuring binding parameters at equilibrium are reported, both those which keep the equilibrium intact and those which implicate its disruption. A concept is developed according to which the determination of a specific steroid binding protein is based on the »differential dissociation« of the several steroid binding complexes present in most biological mixtures. Methods which allow determination of the kinetic parameters of the binding systems are also presented. Various representations of the binding and therefore different modes of graphic representation and calculation are discussed, including the recent »proportion graph« method.


2016 ◽  
Author(s):  
Larry Chamley ◽  
Mancy Tong ◽  
Jo Stanley ◽  
Qi Chen ◽  
Michelle Wise ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document