Development of Long-Circulating and Fusogenic Liposomes Co-encapsulating Paclitaxel and Doxorubicin in Synergistic Ratio for the Treatment of Breast Cancer

2019 ◽  
Vol 16 (9) ◽  
pp. 829-838 ◽  
Author(s):  
Marjorie Coimbra Roque ◽  
Marina Santiago Franco ◽  
José Mário Carneiro Vilela ◽  
Margareth Spangler Andrade ◽  
André Luís Branco de Barros ◽  
...  

Background: The co-encapsulation of paclitaxel (PTX) and doxorubicin (DXR) in liposomes has the potential to offer pharmacokinetic and pharmacodynamic advantages, providing delivery of both drugs to the tumor at the ratio required for synergism. Objective: To prepare and characterize long-circulating and fusogenic liposomes co-encapsulating PTX and DXR in the 1:10 molar ratio (LCFL-PTX/DXR). Methods: LCFL-PTX/DXR was prepared by the lipid film formation method. The release of PTX and DXR from liposomes was performed using a dialysis method. Studies of cytotoxicity, synergism, and cellular uptake were also carried out. Results: The encapsulation percentage of PTX and DXR was 74.1 ± 1.8 % and 89.6 ± 12.3%, respectively, and the mean diameter of the liposomes was 244.4 ± 28.1 nm. The vesicles remained stable for 30 days after their preparation. The drugs were simultaneously released from vesicles during 36 hours, maintaining the drugs combination in the previously established ratio. Cytotoxicity studies using 4T1 breast cancer cells showed lower inhibitory concentration 50% (IC50) value for LCFL-PTX/DXR treatment (0.27 ± 0.11 µm) compared to the values of free drugs treatment. In addition, the combination index (CI) assessed for treatment with LCFL-PTX/DXR was equal to 0.11 ± 0.04, showing strong synergism between the drugs. Cell uptake studies have confirmed that the molar ratio between PTX and DXR is maintained when the drugs are administered in liposomes. Conclusion: It was possible to obtain LCFL-PTX/DXR suitable for intravenous administration, capable of releasing the drugs in a fixed synergistic molar ratio in the tumor region.

Author(s):  
P.M. Frederik ◽  
K.N.J. Burger ◽  
M.C.A. Stuart ◽  
A.J. Verkleij

Cellular membranes are often composed of phospholipid mixtures in which one or more components have a tendency to adopt a type II non-bilayer lipid structure such as the inverted hexagonal (H||) phase. The formation of a type II non-bilayer intermediate, the inverted lipid micel is proposed as the initial step in membrane fusion (Verkleij 1984, Siegel, 1986). In the various forms of cellular transport mediated by carrier vesicles (e.g. exocytosis, endocytosis) the regulation of membrane fusion, and hence of inverted lipid micel formation, is of vital importance.We studied the phase behaviour of simple and complex lipid mixtures by cryo-electron microscopy to gain more insight in the ultrastructure of different lipid phases (e.g. Pβ’, Lα, H||) and in the complex membrane structures arising after Lα < - > H|| phase changes (e.g. isotropic, cubic). To prepare hydrated thin films a 700 mesh hexagonal grid (without supporting film) was dipped into and withdrawn from a liposome suspension. The excess fluid was blotted against filter paper and the thin films that form between the bars of the specimen grid were immediately (within 1 second) vitrified by plunging of the carrier grids into ethane cooled to its melting point by liquid nitrogen (Dubochet et al., 1982). Surface active molecules such as phospholipids play an important role in the formation and thinning of these aqueous thin films (Frederik et al., 1989). The formation of two interfacial layers at the air-water interfaces requires transport of surface molecules from the suspension as well as the orientation of these molecules at the interfaces. During the spontaneous thinning of the film the interfaces approach each other, initially driven by capillary forces later by Van der Waals attraction. The process of thinning results in the sorting by size of the suspended material and is also accompanied by a loss of water from the thinner parts of the film. This loss of water may result in the concentration and eventually in partial dehydration of suspended material even if thin films are vitrified within 1 sec after their formation. Film formation and vitrification were initiated at temperatures between 20-60°C by placing die equipment in an incubator provided widi port holes for the necessary manipulations. Unilamellar vesicles were made from dipalmitoyl phosphatidyl choline (DPPC) by an extrusion method and showed a smooth (Lα) or a rippled (PB’.) structure depending on the temperature of the suspensions and the temperature of film formation (50°C resp. 39°C) prior to vitrification. The thermotropic phases of hydrated phospholipids are thus faithfully preserved in vitrified thin films (fig. a,b). Complex structures arose when mixtures of dioleoylphosphatidylethanol-amine (DOPE), dioleoylphosphatidylcholine (DOPC) and cholesterol (molar ratio 3/1/2) are heated and used for thin film formation. The tendency of DOPE to adopt the H|| phase is responsible for the formation of complex structures in this lipid mixture. Isotropic and cubic areas (fig. c,d) having a bilayer structure are found in coexistence with H|| cylinders (fig. e). The formation of interlamellar attachments (ILA’s) as observed in isotropic and cubic structures is also thought to be of importance in biological fusion events. Therefore the study of the fusion activity of influenza B virus with liposomes (DOPE/DOPC/cholesterol/ganglioside in a molar ratio 1/1/2/0.2) was initiated. At neutral pH only adsorption of virus to liposomes was observed whereas 2 minutes after a drop in pH (7.4 - > 5.4) fusion between virus and liposome membranes was demonstrated (fig. f). The micrographs illustrate the exciting potential of cryo-electron microscopy to study lipid-lipid and lipid-protein interactions in hydrated specimens.


2020 ◽  
Vol 20 (7) ◽  
pp. 790-799 ◽  
Author(s):  
Farnaz D. Moghaddam ◽  
Pejman Mortazavi ◽  
Somayeh Hamedi ◽  
Mohammad Nabiuni ◽  
Nasim H. Roodbari

Background and Purpose: Melittin, as the main ingredient of honeybee venom, that has shown anticancer properties. The present study aimed at investigating the cytotoxic impacts of melittin on 4T1 breast cancer cells. Methods: Hemolytic activity of different concentrations (0.125, 0.25, 0.5, 1, 2, 4, 8μg/ml) of melittin was assayed and then cytotoxicity of selected concentrations of melittin (2, 4, 8, 16, 32, and 64μg/ml), 2 and 4μg/ml of cisplatin and 0.513, 0.295 and 0.123μg/ml of doxorubicin was evaluated on 4T1 cells using MTT assay. We used Morphological evaluation and flow cytometric analysis was used. Real time PCR was also used to determine mRNA expression of Mfn1 and Drp1 genes. Results: All compounds showed anti-proliferative effects on the tumor cell line with different potencies. Melittin had higher cytotoxicity against 4T1 breast cancer cells (IC50= 32μg/ml-72h) and higher hemolytic activity (HD50= 1μg/ml), as compared to cisplatin and doxorubicin. Mellitin at 16 and 32μg/ml showed apoptotic effects on 4T1 cells according to the flow cytometric analysis. The Real time PCR analysis of Drp1 and Mfn1 expression in cells treated with 16μg/ml of melittin revealed an up-regulation in Drp1 and Mfn1 genes mRNA expression in comparison with control group. Treatment with 32μg/ml of melittin was also associated with a rise in mRNA expression of Drp1 and Mfn1 as compared to the control group. Conclusion: The results of this study showed that melittin has anticancer effects on 4T1 cell lines in a dose and time dependent manner and can be a good candidate for further research on breast cancer treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew J. Hall ◽  
Amy G. Robertson ◽  
Leila R. Hill ◽  
Louis M. Rendina

AbstractThe synthesis of a new series of Gd(III)-arylphosphonium complexes is described and the solution stability of selected compounds is reported. Their lipophilicity and uptake in human glial (SVG p12) and human glioblastoma multiforme (T98G) cell lines are presented. The in vitro cytotoxicity of all complexes was determined to be low at therapeutically-relevant concentrations. Selected Gd(III) complexes are potential candidates for further investigation as theranostic agents.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Taherian ◽  
N. Esfandiari ◽  
S. Rouhani

Abstract Background Breast cancer is one of the most challenging cancers among women which is considered one of the most lethal cancers to this date. From the time that cancer has been discovered, finding the best therapeutic method is still an ongoing process. As a novel therapeutic method, nanomedicine has brought a vast number of materials that could versatilely be used as a drug carrier. The purpose of this study is to develop a novel black pomegranate peel extract loaded with chitosan-coated magnetic nanoparticles to treat breast cancer cells. Results The morphology and size distribution of the nanoparticles studied by dynamic light scattering, atomic force microscopy, scanning, and transitional electron microscopy showed the spherical shape of the nanoparticles and their promising size range. Studies by Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and zeta sizer confirmed the synthesis, substantial crystallinity, magnetic potential of the nanoparticles, and their satisfactory stability. The DPPH assay revealed that the obtained black pomegranate peel extract has 60% free radical scavenging activity. The cytotoxicity studies by MTT and LDH assay carried out on NIH/3T3, MBA-MB-231, and 4T1 cells confirmed that the magnetic nanoparticles had no significant cytotoxicity on the cells. However, the drug-loaded nanoparticles could significantly eradicate cancerous cells which had more efficiency comparing to free drug. Furthermore, free drug and drug-loaded nanoparticles had no toxic effect on normal cells. Conclusion Owing to the results achieved from this study, the novel drug-loaded nanoparticles are compatible to be used for breast cancer treatment and could potentially be used for further in vivo studies.


2021 ◽  
Vol 60 (12) ◽  
pp. 3365
Author(s):  
Chen-Wen Lu ◽  
Andrey V. Belashov ◽  
Anna A. Zhikhoreva ◽  
Irina V. Semenova ◽  
Chau-Jern Cheng ◽  
...  

2019 ◽  
Vol 20 (22) ◽  
pp. 5581
Author(s):  
Chung-Yih Wang ◽  
Chun-Yuan Chang ◽  
Chun-Yu Wang ◽  
Kaili Liu ◽  
Chia-Yun Kang ◽  
...  

Radiation is a widely used therapeutic method for treating breast cancer. N-dihydrogalactochitosan (GC), a biocompatible immunostimulant, is known to enhance the effects of various treatment modalities in different tumor types. However, whether GC can enhance the radiosensitivity of cancer cells remains to be explored. In this study, triple-negative murine 4T1 breast cancer cells transduced with multi-reporter genes were implanted in immunocompetent Balb/C mice to track, dissect, and identify liver-metastatic 4T1 cells. These cells expressed cancer stem cell (CSC) -related characteristics, including the ability to form spheroids, the expression of the CD44 marker, and the increase of protein stability. We then ex vivo investigated the potential effect of GC on the radiosensitivity of the liver-metastatic 4T1 breast cancer cells and compared the results to those of parental 4T1 cells subjected to the same treatment. The cells were irradiated with increased doses of X-rays with or without GC treatment. Colony formation assays were then performed to determine the survival fractions and radiosensitivity of these cells. We found that GC preferably increased the radiosensitivity of liver-metastatic 4T1 breast cancer cells rather than that of the parental cells. Additionally, the single-cell DNA electrophoresis assay (SCDEA) and γ-H2AX foci assay were performed to assess the level of double-stranded DNA breaks (DSBs). Compared to the parental cells, DNA damage was significantly increased in liver-metastatic 4T1 cells after they were treated with GC plus radiation. Further studies on apoptosis showed that this combination treatment increased the sub-G1 population of cells, but not caspase-3 cleavage, in liver-metastatic breast cancer cells. Taken together, the current data suggest that the synergistic effects of GC and irradiation might be used to enhance the efficacy of radiotherapy in treating metastatic tumors.


Author(s):  
Shan-Ting Hsu ◽  
Y. Lawrence Yao

Poly(L-lactic acid) (PLLA) has been shown to have potential medical usage such as in drug delivery because it can degrade into bioabsorbable products in physiological environments, and its degradation is affected by crystallinity. In this paper, the effect of film formation method and annealing on the crystallinity of PLLA are investigated. The films are made through solvent casting and spin coating methods, and subsequent annealing is conducted. The resulting crystalline morphology, structure, conformation, and intermolecular interaction are examined using optical microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. It is observed that solvent casting produces category 1 spherulites while annealed spin coated films leads to spherulites of category 2. Distinct lamellar structures and intermolecular interactions in the two kinds of films have been shown. The results enable better understanding of the crystallinity in PLLA, which is essential for its drug delivery application.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 136
Author(s):  
Isa de Boer ◽  
Ceri J. Richards ◽  
Christoffer Åberg

Drug delivery using nano-sized carriers holds tremendous potential for curing a range of diseases. The internalisation of nanoparticles by cells, however, remains poorly understood, restricting the possibility for optimising entrance into target cells, avoiding off-target cells and evading clearance. The majority of nanoparticle cell uptake studies have been performed in the presence of only the particle of interest; here, we instead report measurements of uptake when the cells are exposed to two different types of nanoparticles at the same time. We used carboxylated polystyrene nanoparticles of two different sizes as a model system and exposed them to HeLa cells in the presence of a biomolecular corona. Using flow cytometry, we quantify the uptake at both average and individual cell level. Consistent with previous literature, we show that uptake of the larger particles is impeded in the presence of competing smaller particles and, conversely, that uptake of the smaller particles is promoted by competing larger particles. While the mechanism(s) underlying these observations remain(s) undetermined, we are partly able to restrain the likely possibilities. In the future, these effects could conceivably be used to enhance uptake of nano-sized particles used for drug delivery, by administering two different types of particles at the same time.


Sign in / Sign up

Export Citation Format

Share Document