Recent trends in carbon nanotubes based prostate cancer therapy: A biomedical hybrid for diagnosis and treatment

2021 ◽  
Vol 18 ◽  
Author(s):  
Raja Murugesan ◽  
Sureshkumar Raman

: At present treatment methods for cancer are limited, partially due to the solubility, poor cellular distribution of drug molecules and, the incapability of drugs to annoy the cellular barriers. Carbon nanotubes (CNTs) generally have excellent physio-chemical properties, which include high-level penetration into the cell membrane, high surface area and high capacity of drug loading by in circulating modification with bio-molecules, project them as an appropriate candidate to diagnose and deliver drugs to prostate cancer (PCa). Additionally, the chemically modified CNTs which have excellent 'Biosensing' properties therefore makes it easy for detecting PCa without fluorescent agent and thus targets the particular site of PCa and also, Drug delivery can accomplish a high efficacy, enhanced permeability with less toxic effects. While CNTs have been mainly engaged in cancer treatment, a few studies are focussed on the diagnosis and treatment of PCa. Here, we detailly reviewed the current progress of the CNTs based diagnosis and targeted drug delivery system for managing and curing PCa.

2020 ◽  
pp. 29-36
Author(s):  
Sabita Shrestha

Carbon nanotubes are one-dimensional allotrope of carbon having high aspect ratio, high surface area, and excellent material properties. It has applications in many fields such as catalyst, nano-electronics, field emission, nano medicine, solar cells, energy storage etc. Drug delivery is one of the important applications of carbon nanotubes because of its unique properties such as high drug loading capacity, thermal ablation, ease of cellular uptake. This article briefly overviews the different steps in drug delivery and anticancer therapy such as mechanism of drug loading, transportation, distribution, metabolism and finally excretion of drug.


Author(s):  
Hemalatha K.P. ◽  

Nanomaterials are the foundations of Nanotechnology, which are measured in nanoscales, Carbon nanotubes are one of the interesting nanomaterials, studied for over 25 years because of their superlative properties such as high surface area, electrical and thermal conductivity, high biocompatibility, flexibility, resistance to corrosion and nanosize. According to research, carbon nanotubes are applied in sensing, water treatment, and drug delivery, mainly used to deliver the anticancer drugs. In our work, functionalization of multi walled carbon nanotubes done by covalent and non-covalent functionation methods, covalent functionalization showed better dispersing efficiency in aqueous medium and compatible with biological systems with damaging the crystal lattice of carbon nanotubes. Non covalent functionalization helps to derivatized with active compounds, surface adsorption or attachment of various molecules or antibodies, which subsequently helps in targeting the site and to produce therapeutic effects. Different formulations prepared by functionalized MWCNTs and multiple functionalization of MWCNTs done by binding the drug and antibodies to prepare functionalized MWCNTs 5-Fluorouracil complexes. The Cytotoxicity assay was carried out for the obtained new targeting formulations to analyze the effect of all the formulations on HCT116 cell line. The percentage death was determined based on the viability of the cells in the appropriate vehicle controls. In this study, we report the successful functionalization, binding of 5 Fluorouracil, antibodies to MWCNTs, and cells viability of all prepared formulations for the development of novel carbon based anticancer drug delivery system. Functionalized MWCNTs-5-Fluorouracil antibodies composite at concentration above 2.5 µg/mL exhibited ≥ 50% cytotoxicity post normalization with compound control to negate precipitation observed with the compound. All the formulations showed the precipitations indicating antitumor activity and biocompatibility.


2021 ◽  
Author(s):  
Rama Dubey ◽  
Dhiraj Dutta ◽  
Arpan Sarkar ◽  
Pronobesh Chattopadhyay

Carbon nanotubes (CNTs) are considered as one of the ideal materials due to their high surface area, high aspect ratio, impressive material properties, such as mechanical strength, thermal and electrical...


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 553
Author(s):  
Kheireddine El-Boubbou ◽  
Rizwan Ali ◽  
Sulaiman Al-Humaid ◽  
Alshaimaa Alhallaj ◽  
O. Lemine ◽  
...  

This work reports the fabrication of iron oxide mesoporous magnetic nanostructures (IO-MMNs) via the nano-replication method using acid-prepared mesoporous spheres (APMS) as the rigid silica host and iron (III) nitrate as the iron precursor. The obtained nanosized mesostructures were fully characterized by SEM, TEM, DLS, FTIR, XRD, VSM, and nitrogen physisorption. IO-MMNs exhibited relatively high surface areas and large pore volumes (SBET = 70–120 m2/g and Vpore = 0.25–0.45 cm3/g), small sizes (~300 nm), good crystallinity and magnetization, and excellent biocompatibility. With their intrinsic porosities, high drug loading efficiencies (up to 70%) were achieved and the drug release rates were found to be pH-dependent. Cytotoxicity, confocal microscopy, and flow cytometry experiments against different types of cancerous cells indicated that Dox-loaded IO-MMNs reduced the viability of metastatic MCF-7 and KAIMRC-1 breast as well as HT-29 colon cancer cells, with the least uptake and toxicity towards normal primary cells (up to 4-fold enhancement). These results strongly suggest the potential use of IO-MMNs as promising agents for enhanced and effective drug delivery in cancer theranostics.


Author(s):  
N. Buang ◽  
M. Aziz ◽  
S. Sanip ◽  
J.C. Tee ◽  
Z.H.Z Abidin ◽  
...  

Carbon are well known as active materials for energy storage and conversion. They are preferred because carbon materials have high electrical conductivity, low cost, high surface area, porosity, formability and possess good chemical and electrochemical resistivity. The most recently discovered novel carbon material is the carbon nanotubes, having unique geometrical structure and stable mechanical and chemical properties. The starting materials for carbon nanotubes production widely used are high purity graphite. Thus, two types of carbons were studied and thermal treatments were conducted at temperatures ranging from 600 – 800 °C for several hours. The effect of the pretreatment upon their morphology and surface area were looked into. It was found that significant changes occurred for the natural carbons while the synthetic carbons showed little or no changes at the particular temperature range. The thermal treatment has resulted in the exposure of fresh edge planes and microparticles as well as changes in the specific surface area and enhances their adsorption properties.


2021 ◽  
Vol 2058 (1) ◽  
pp. 012015
Author(s):  
O Yu Griaznova ◽  
I V Zelepukin ◽  
G V Tikhonowski ◽  
V N Kolokolnikov ◽  
S M Deyev

Abstract One of the challenges of the medicine is to improve the chemical stability of drugs and to prevent their premature biodegradation before reaching the therapeutic target. Various nanoparticles were used to solve this problem, but low drug loading efficiency limited their biomedical applications. Metal organic frameworks are promising candidates for drug delivery since they have extremely high surface area and regular porosity. In this study, we prepared high-crystalline MIL-53 frameworks based on aluminium and 2-aminoterephtalic acid by microwave-assisted synthesis and evaluated their properties as drug carriers. Drug loading of chemotherapeutic and diagnostic molecules of different nature riches value of 34% by particle weight, significantly higher than those of other reported solid nanoparticles. Therefore, our results make MIL-53 (Al) frameworks promising candidate for drug delivery.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Sazan M. Haidary ◽  
Emma P. Córcoles ◽  
Nihad K. Ali

Porous silicon nanoparticles have been established as excellent candidates for medical applications as drug delivery devices, due to their excellent biocompatibility, biodegradability, and high surface area. The simple fabrication method by electrochemical anodization of silicon and its photoluminescent properties are some of the merits that have contributed to the increasing interest given to porous silicon. This paper presents the methods of fabrication, which can be customized to control the pore size, various chemical treatments used for the modification of silicon surfaces, and the characterization and pore morphology of silicon structures. Different approaches used for drug loading and the variety of coatings used for the controlled released are revised. The monitoring of the toxicity of silicon degradation products and the in vivo release of a drug in a specific site are described taking into account its significance on medical applications, specifically on cancer therapy.


Nanoscale ◽  
2018 ◽  
Vol 10 (24) ◽  
pp. 11384-11391 ◽  
Author(s):  
Linlin Wang ◽  
Hongli Zhu ◽  
Ying Shi ◽  
You Ge ◽  
Xiaomiao Feng ◽  
...  

Novel catalytic micromotors based on porous ZIF-67 were used as efficient fluorescence drug (DOX) carriers. Benefiting from the porous nature and high surface area, these micromotors display effective motion, long durable movement life and high drug loading capacity.


Sign in / Sign up

Export Citation Format

Share Document