scholarly journals Nanoporous Silicon as Drug Delivery Systems for Cancer Therapies

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Sazan M. Haidary ◽  
Emma P. Córcoles ◽  
Nihad K. Ali

Porous silicon nanoparticles have been established as excellent candidates for medical applications as drug delivery devices, due to their excellent biocompatibility, biodegradability, and high surface area. The simple fabrication method by electrochemical anodization of silicon and its photoluminescent properties are some of the merits that have contributed to the increasing interest given to porous silicon. This paper presents the methods of fabrication, which can be customized to control the pore size, various chemical treatments used for the modification of silicon surfaces, and the characterization and pore morphology of silicon structures. Different approaches used for drug loading and the variety of coatings used for the controlled released are revised. The monitoring of the toxicity of silicon degradation products and the in vivo release of a drug in a specific site are described taking into account its significance on medical applications, specifically on cancer therapy.

2021 ◽  
Vol 18 ◽  
Author(s):  
Raja Murugesan ◽  
Sureshkumar Raman

: At present treatment methods for cancer are limited, partially due to the solubility, poor cellular distribution of drug molecules and, the incapability of drugs to annoy the cellular barriers. Carbon nanotubes (CNTs) generally have excellent physio-chemical properties, which include high-level penetration into the cell membrane, high surface area and high capacity of drug loading by in circulating modification with bio-molecules, project them as an appropriate candidate to diagnose and deliver drugs to prostate cancer (PCa). Additionally, the chemically modified CNTs which have excellent 'Biosensing' properties therefore makes it easy for detecting PCa without fluorescent agent and thus targets the particular site of PCa and also, Drug delivery can accomplish a high efficacy, enhanced permeability with less toxic effects. While CNTs have been mainly engaged in cancer treatment, a few studies are focussed on the diagnosis and treatment of PCa. Here, we detailly reviewed the current progress of the CNTs based diagnosis and targeted drug delivery system for managing and curing PCa.


2021 ◽  
Vol 21 (2) ◽  
pp. 1118-1126
Author(s):  
Min Zhang ◽  
Junwen Wang ◽  
Qiang Cheng

Ulcerative colitis (UC) is a non-specific intestinal inflammatory disease. UC occurred in developed countries in the past, but in the past 20 years, the incidence of UC in developing countries has also shown a clear upward trend. The hospitalization rate and surgical rate of UC have been high, and may lead to the occurrence of intestinal malignant tumors, which has greatly affected the quality of life and life expectancy of patients. Because of this, how to effectively treat UC has become a hotspot in modern gastrointestinal diseases. Due to the limitation of the dosage form of the drug and the special environment of the gastrointestinal tract, traditional oral drugs have the disadvantage of not being able to make the drug effective in specific lesions when treating inflammatory bowel disease. Therefore, it is of great scientific significance and application value to develop drug carriers that can target the inflammatory sites and slow-release drugs to treat inflammation. In this study, TNBS method was used to prepare a rat model of ulcerative colitis, and the effect of modified porous silicon nanoparticles as a drug carrier in the treatment of UC was investigated. We first induced acute enteritis model in C57BL/6 rats through TNBS, and then used in vivo fluorescence imaging and immunofluorescence staining technology to prove that porous silicon nanoparticles can indeed be specifically concentrated in the damaged part of the mouse intestine, and then administered by gastric administration. The drug method allows rats to take different types and concentrations of drug-loaded porous silicon nanoparticles, and finally collect relevant samples for evaluation of drug efficacy after the end of the administration cycle. The disease activity index showed the best gastrointestinal recovery in mice treated with modified drug-loaded porous silicon nanoparticles. The pathological analysis of rat colons using HE staining proved that the improved drug-loaded porous silicon nanoparticles had a more significant therapeutic effect. TUNEL staining results showed that the level of apoptosis in the colon injury site of rats treated with modified drug-loaded porous silicon nanoparticles was reduced. The test results of drug concentration in rat colon tissue blood also proved that porous silicon nanoparticle drug-loading system can reduce the release of inflammatory factors in vivo. Based on the TNBS-induced UC rat model, this paper evaluates the therapeutic effect of modified drug-loaded porous silicon nanoparticles. The results show that in the treatment of ulcerative colitis, the nanoparticle drug-loaded system is a more effective treatment way.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 553
Author(s):  
Kheireddine El-Boubbou ◽  
Rizwan Ali ◽  
Sulaiman Al-Humaid ◽  
Alshaimaa Alhallaj ◽  
O. Lemine ◽  
...  

This work reports the fabrication of iron oxide mesoporous magnetic nanostructures (IO-MMNs) via the nano-replication method using acid-prepared mesoporous spheres (APMS) as the rigid silica host and iron (III) nitrate as the iron precursor. The obtained nanosized mesostructures were fully characterized by SEM, TEM, DLS, FTIR, XRD, VSM, and nitrogen physisorption. IO-MMNs exhibited relatively high surface areas and large pore volumes (SBET = 70–120 m2/g and Vpore = 0.25–0.45 cm3/g), small sizes (~300 nm), good crystallinity and magnetization, and excellent biocompatibility. With their intrinsic porosities, high drug loading efficiencies (up to 70%) were achieved and the drug release rates were found to be pH-dependent. Cytotoxicity, confocal microscopy, and flow cytometry experiments against different types of cancerous cells indicated that Dox-loaded IO-MMNs reduced the viability of metastatic MCF-7 and KAIMRC-1 breast as well as HT-29 colon cancer cells, with the least uptake and toxicity towards normal primary cells (up to 4-fold enhancement). These results strongly suggest the potential use of IO-MMNs as promising agents for enhanced and effective drug delivery in cancer theranostics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2359
Author(s):  
Jung Park ◽  
Anisoara Cimpean ◽  
Alexander B. Tesler ◽  
Anca Mazare

TiO2 nanostructures and more specifically nanotubes have gained significant attention in biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to morphology and properties of TiO2 nanotubes obtained by electrochemical anodization of titanium for the biomedical field. Following the discussion of TiO2 nanotopographical characterization, the advantages of anodic TiO2 nanotubes will be introduced, such as their high surface area controlled by the morphological parameters (diameter and length), which provides better adsorption/linkage of bioactive molecules. We further discuss the key interactions with bone-related cells including osteoblast and stem cells in in vitro cell culture conditions, thus evaluating the cell response on various nanotubular structures. In addition, the synergistic effects of electrical stimulation on cells for enhancing bone formation combining with the nanoscale environmental cues from nanotopography will be further discussed. The present review also overviews the current state of drug delivery applications using TiO2 nanotubes for increased osseointegration and discusses the advantages, drawbacks, and prospects of drug delivery applications via these anodic TiO2 nanotubes.


2021 ◽  
Vol 2058 (1) ◽  
pp. 012015
Author(s):  
O Yu Griaznova ◽  
I V Zelepukin ◽  
G V Tikhonowski ◽  
V N Kolokolnikov ◽  
S M Deyev

Abstract One of the challenges of the medicine is to improve the chemical stability of drugs and to prevent their premature biodegradation before reaching the therapeutic target. Various nanoparticles were used to solve this problem, but low drug loading efficiency limited their biomedical applications. Metal organic frameworks are promising candidates for drug delivery since they have extremely high surface area and regular porosity. In this study, we prepared high-crystalline MIL-53 frameworks based on aluminium and 2-aminoterephtalic acid by microwave-assisted synthesis and evaluated their properties as drug carriers. Drug loading of chemotherapeutic and diagnostic molecules of different nature riches value of 34% by particle weight, significantly higher than those of other reported solid nanoparticles. Therefore, our results make MIL-53 (Al) frameworks promising candidate for drug delivery.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 185
Author(s):  
Hamed Hosseinian ◽  
Samira Hosseini ◽  
Sergio O. Martinez-Chapa ◽  
Mazhar Sher

In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring in diabetes patients, drug delivery for the treatment of ocular illnesses, and colorblindness treatment. In specific, this class of medical devices is rapidly advancing in the area of drug loading and ocular drug release through incorporation of electrospun fibers. The electrospun fiber matrices offer a high surface area, controlled morphology, wettability, biocompatibility, and tunable porosity, which are highly desirable for controlled drug release. This article provides an overview of the advances of contact lens devices in medical applications with a focus on four main applications of these soft wearable devices: (i) IOP measurement and monitoring, (ii) glucose detection, (iii) ocular drug delivery, and (iv) colorblindness treatment. For each category and application, significant challenges and shortcomings of the current devices are thoroughly discussed, and new areas of opportunity are suggested. We also emphasize the role of electrospun fibers, their fabrication methods along with their characteristics, and the integration of diverse fiber types within the structure of the wearable contact lenses for efficient drug loading, in addition to controlled and sustained drug release. This review article also presents relevant statistics on the evolution of medical contact lenses over the last two decades, their strengths, and the future avenues for making the essential transition from clinical trials to real-world applications.


2020 ◽  
pp. 29-36
Author(s):  
Sabita Shrestha

Carbon nanotubes are one-dimensional allotrope of carbon having high aspect ratio, high surface area, and excellent material properties. It has applications in many fields such as catalyst, nano-electronics, field emission, nano medicine, solar cells, energy storage etc. Drug delivery is one of the important applications of carbon nanotubes because of its unique properties such as high drug loading capacity, thermal ablation, ease of cellular uptake. This article briefly overviews the different steps in drug delivery and anticancer therapy such as mechanism of drug loading, transportation, distribution, metabolism and finally excretion of drug.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Adibah Zamhuri ◽  
Gim Pao Lim ◽  
Nyuk Ling Ma ◽  
Kian Sek Tee ◽  
Chin Fhong Soon

AbstractMXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as Tx/Tz) with a general formula of Mn+1XnTx, where n = 1–3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.


Nanoscale ◽  
2018 ◽  
Vol 10 (24) ◽  
pp. 11384-11391 ◽  
Author(s):  
Linlin Wang ◽  
Hongli Zhu ◽  
Ying Shi ◽  
You Ge ◽  
Xiaomiao Feng ◽  
...  

Novel catalytic micromotors based on porous ZIF-67 were used as efficient fluorescence drug (DOX) carriers. Benefiting from the porous nature and high surface area, these micromotors display effective motion, long durable movement life and high drug loading capacity.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 98
Author(s):  
Liangyu Lu ◽  
Mengyu Ma ◽  
Chengtao Gao ◽  
Hongwei Li ◽  
Long Li ◽  
...  

Modern pharmaceutics requires novel drug loading platforms with high drug loading capacity, controlled release, high stability, and good biocompacity. Metal–organic frameworks (MOFs) show promising applications in biomedicine owing to their extraordinarily high surface area, tunable pore size, and adjustable internal surface properties. However, MOFs have low stability due to weak coordinate bonding and limited biocompatibility, limiting their bioapplication. In this study, we fabricated MOFs/polysilsesquioxane (PSQ) nanocomposites and utilized them as drug carriers. Amine-functionalized MOF (UiO-66-NH2) nanoparticles were synthesized and encapsulated with epoxy-functionalized polysilsesquioxane layer on the surface via a facile process. MOFs possessed high surface area and regular micropores, and PSQs offered stability, inertness, and functionality. The obtained UiO-66-NH2@EPSQ nanocomposites were utilized as carriers for ibuprofen, a drug with carboxylic groups on the surface, and demonstrated high drug loading capacity and well-controlled release property. The UiO-66-NH2@EPSQ nanocomposite exhibited low cytotoxicity to HeLa cells within a wide concentration range of 10–100 µg/mL, as estimated by the MTT method. The UiO-66-NH2@EPSQ drug release system could be a potential platform in the field of controlled drug delivery.


Sign in / Sign up

Export Citation Format

Share Document