Oxidative Damage of Proteins Precedes Loss of Cholinergic Phenotype in the Septal Neurons of Olfactory Bulbectomized Mice

2021 ◽  
Vol 19 ◽  
Author(s):  
O.A. Nedogreeva ◽  
N.A. Evtushenko ◽  
A.O. Manolova ◽  
D.I. Peregud ◽  
A.A. Yakovlev ◽  
...  

Background: The development of cholinergic deficit is considered an early sign of a number of pathological conditions, including Alzheimer’s disease. Cholinergic dysfunction underlies cognitive decline associated with both normal aging and Alzheimer’s disease. Objective: Here, we studied a possible mechanism of functional impairment of cholinergic neurons using an olfactory bulbectomy model. Methods: Male mice were subjected to olfactory bulbectomy or sham surgery. Three weeks after that they were trained in Morris water maze and then euthanized one month after surgery. The cholinergic indices as well as the indices of oxidative stress were studied using immunohistochemistry, western blot and ELISA. Gene expression was studied using RT-qPCR. Results: The experimental treatment was followed by impaired learning of a standard spatial task in a water maze. This was associated with a decrease in the number of cells containing choline acetyltransferase (ChAT), in relation to total number of neurons in the medial septum and lower ChAT enzymatic activity in the hippocampus. However, the levels of mRNAs of ChAT, vesicular ACh transporter and acetylcholine esterase remained unchanged in bulbectomized mice compared to sham-operated animals. These alterations were preceded by the accumulation of protein-bound carbonyls, indicating oxidative damage of proteins, whereas oxidative damage of nucleic acids was not detected. Conclusion: We assume that in olfactory bulbectomy model, oxidative damage of proteins may cause cholinergic dysfunction rather than irreversible neuronal damage. These data indicate that cholinergic neurons of the basal forebrain are very sensitive to oxidative stress, which may be responsible for the appearance of early cognitive decline in Alzheimer’s disease.

2018 ◽  
Vol 17 (6) ◽  
pp. 421-429 ◽  
Author(s):  
Tanveer Beg ◽  
Smita Jyoti ◽  
Falaq Naz ◽  
Rahul ◽  
Fahad Ali ◽  
...  

Background: Alzheimer’s disease (AD) is characterized by the accumulation and deposition of β-amyloid peptides leading to a progressive neuronal damage and cell loss. Besides several hypotheses for explaining the neurodegenerative mechanisms, oxidative stress has been considered to be one of them. Till date, there is no cure for AD, but the pathogenesis of the disease could be delayed by the use of natural antioxidants. In this context, we decided to study the effect of kaempferol against the transgenic Drosophila expressing human amyloid beta-42. Method: The AD flies were allowed to feed on the diet having 10, 20, 30 and 40µM of kaempferol for 30 days. After 30 days of exposure, the amyloid beta flies were studied for their climbing ability and Aversive Phototaxis Suppression assay. Amyloid beta flies head homogenate was prepared for estimating the oxidative stress markers, Caspase and acetylcholinesterase activity. Results: The results of the present study reveal that the exposure of AD flies to kaempferol delayed the loss of climbing ability, memory, reduced the oxidative stress and acetylcholinesterase activity. Conclusion: Kaempferol could be used as a possible therapeutic agent against the progression of the Alzheimer’s disease.


2014 ◽  
Vol 463 (2) ◽  
pp. 177-189 ◽  
Author(s):  
D. Allan Butterfield ◽  
Fabio Di Domenico ◽  
Aaron M. Swomley ◽  
Elizabeth Head ◽  
Marzia Perluigi

Accumulation of oxidative damage is a common feature of neurodegeneration that, together with mitochondrial dysfunction, point to the fact that reactive oxygen species are major contributors to loss of neuronal homoeostasis and cell death. Among several targets of oxidative stress, free-radical-mediated damage to proteins is particularly important in aging and age-related neurodegenerative diseases. In the majority of cases, oxidative-stress-mediated post-translational modifications cause non-reversible modifications of protein structure that consistently lead to impaired function. Redox proteomics methods are powerful tools to unravel the complexity of neurodegeneration, by identifying brain proteins with oxidative post-translational modifications that are detrimental for protein function. The present review discusses the current literature showing evidence of impaired pathways linked to oxidative stress possibly involved in the neurodegenerative process leading to the development of Alzheimer-like dementia. In particular, we focus attention on dysregulated pathways that underlie neurodegeneration in both aging adults with DS (Down's syndrome) and AD (Alzheimer's disease). Since AD pathology is age-dependent in DS and shows similarities with AD, identification of common oxidized proteins by redox proteomics in both DS and AD can improve our understanding of the overlapping mechanisms that lead from normal aging to development of AD. The most relevant proteomics findings highlight that disturbance of protein homoeostasis and energy production are central mechanisms of neurodegeneration and overlap in aging DS and AD. Protein oxidation affects crucial intracellular functions and may be considered a ‘leitmotif’ of degenerating neurons. Therapeutic strategies aimed at preventing/reducing multiple components of processes leading to accumulation of oxidative damage will be critical in future studies.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wenwen Zhang ◽  
Fangling Zhang ◽  
Qichao Hu ◽  
Xiaolin Xiao ◽  
Linbo Ou ◽  
...  

AbstractWith the advanced discoveries in the field of pathogenesis, a series of cerebral diseases, such as cerebral ischaemia, Alzheimer's disease, and depression, have been found to have multiple signalling targets in the microenvironment. Only a few existing agents have been shown to have curative effects due to this specific circumstance. In recent decades, active ingredients isolated from natural plants have been shown to be crucial for original drug development. Geniposide, mainly extracted from Gardenia jasminoides Ellis, is representative of these natural products. Geniposide demonstrates various biological activities in the treatment of cerebral, cardiovascular, hepatic, tumorous, and other diseases. The multiple protective effects of geniposide on the brain have especially drawn increasing attention. Thus, this article specifically reviews the characteristics of current models of cerebral ischaemia and illustrates the possible effects of geniposide and its pathogenetic mechanisms on these models. Geniposide has been shown to significantly reduce the area of cerebral infarction and alleviate neuronal damage and necrosis mainly by inhibiting inflammatory signals, including NLRP3, TNF-α, IL-6, and IL-1β. Neuronal protection was also involved in activating the PI3K/Akt and Wnt/catenin pathways. Geniposide was able to increase autophagy and inhibit apoptosis by regulating the function of mTOR in treating Alzheimer's disease. Geniposide has also been shown to act as a glucagon-like peptide-1 receptor (GLP-1R) agonist to reduce amyloid plaques and inhibit oxidative stress to alleviate memory impairment as well as synaptic loss. Moreover, geniposide has been shown to exert antidepressant effects primarily by regulating the hypothalamic–pituitary–adrenal (HPA) axis. Detailed explorations have shown that the biological activities of inhibiting inflammatory cytokine secretion, alleviating oxidative stress, and suppressing mitochondrial damage are also involved in the mechanism of action of geniposide. Therefore, geniposide is a promising agent awaiting further exploration for the treatment of cerebral diseases via various phenotypes or signalling pathways.


Aging Cell ◽  
2011 ◽  
Vol 10 (3) ◽  
pp. 403-417 ◽  
Author(s):  
Paola Gamba ◽  
Gabriella Leonarduzzi ◽  
Elena Tamagno ◽  
Michela Guglielmotto ◽  
Gabriella Testa ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mamdooh H. Ghoneum ◽  
Nesrine S. El Sayed

Alzheimer’s disease (AD) is a debilitating and irreversible brain disease that affects an increasing number of aged individuals, mandating the development of protective nutraceuticals. Biobran/MGN-3, an arabinoxylan from rice bran, has potent antioxidant, antiaging, and immunomodulatory effects. The aim of the present study was to investigate the protective effect of Biobran against sporadic Alzheimer’s disease (SAD). SAD was induced in mice via intracerebroventricular injection of streptozotocin (STZ) (3 mg/kg). STZ-treated mice were administered with Biobran for 21 days. The effects of Biobran on memory and learning were measured via the Morris water maze, novel object recognition, and Y-maze tests. Biomarkers for apoptosis, oxidative stress, and amyloidogenesis were measured using ELISA and western blot analysis. Histopathological examination was performed to confirm neuronal damage and amyloid-beta deposition. Biobran reversed the spatial memory deficit in SAD-induced mice, and it increased the expression of glutathione, reduced malondialdehyde, decreased IL-6, decreased intercellular adhesion molecule-1 (ICAM-1), and significantly increased nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE). Moreover, Biobran exerted a protective effect against amyloid-beta-induced apoptosis via the suppression of both cleaved caspase-3 and the proapoptotic protein Bax and via the upregulation of the antiapoptotic protein Bcl-2. Furthermore, it reduced the expression of forkhead box class O proteins. It could be concluded from this study that Biobran may be a useful nutritional antioxidant agent for protection against SAD through its activation of the gene expression of Nrf2/ARE, which in turn modulates the apoptotic and amyloidogenic pathways.


2019 ◽  
Author(s):  
Viviana Soto-Mercado ◽  
Miguel Mendivil-Perez ◽  
Carlos Velez-Pardo ◽  
Francisco Lopera ◽  
Marlene Jimenez-Del-Rio

AbstractAlzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive disturbance as a consequence of the loss of cholinergic neurons in the brain, neuritic plaques and hyperphosphorylation of TAU protein. Although the underlying mechanisms leading to these events are unclear, mutations in presenilin 1 (PSEN1), e.g., E280A (PSEN1 E280A), are causative factors for autosomal dominant early-onset familial AD (FAD). Despite advances in the understanding of the physiopathology of AD, there are no efficient therapies to date. Limitations in culturing brain-derived live neurons might explain the limited effectiveness of AD research. Here, we show that mesenchymal stromal (stem) cells (MSCs) can be used to model FAD, providing novel opportunities to study cellular mechanisms and to establish therapeutic strategies. Indeed, we cultured MSCs with the FAD mutation PSEN1 E280A and wild-type (WT) PSEN1 from umbilical cords and characterized the transdifferentiation of these cells into cholinergic-like neurons (ChLNs). PSEN1 E280A ChLNs but not WT PSEN1 ChLNs exhibited increased intra- and extracellular Aβ42 peptide and TAU phosphorylation (at residues Ser202/Thr205), recapitulating the molecular pathogenesis of FAD caused by mutant PSEN1. Furthermore, PSEN1 E280A ChLNs presented oxidative stress (OS) as evidenced by the oxidation of DJ-1Cys106-SH into DJ-1Cys106-SO3 and the detection of DCF-positive cells and apoptosis markers such as activated pro-apoptosis proteins p53, c-JUN, PUMA and CASPASE-3 and the concomitant loss of the mitochondrial membrane potential and DNA fragmentation. Additionally, mutant ChLNs displayed Ca2+ flux dysregulation and deficient acetylcholinesterase (AChE) activity compared to control ChLNs. Interestingly, the inhibitor JNK SP600125 almost completely blocked TAU phosphorylation. Our findings demonstrate that FAD MSC-derived cholinergic neurons with the PSEN1 E280A mutation are a valid model of AD and provide important clues for the identification of targetable pathological molecules.


2020 ◽  
Vol 10 (12) ◽  
pp. 923
Author(s):  
Vandna Verma ◽  
Devendra Singh ◽  
Reeta KH

The role of oxidative stress, neuro-inflammation and cholinergic dysfunction is already established in the development of Alzheimer’s disease (AD). Sinapic acid (SA), a hydroxylcinnamic acid derivative, has shown neuro-protective effects. The current study evaluates the neuro-protective potential of SA in intracerebroventricular streptozotocin (ICV-STZ) induced cognitive impairment in rats. Male Wistar rats were bilaterally injected with ICV-STZ. SA was administered intragastrically once daily for three weeks. Rats were divided into sham, ICV-STZ, STZ + SA (10 mg/kg), STZ + SA (20 mg/kg) and SA per se (20 mg/kg). Behavioral tests were assessed on day 0 and 21 days after STZ. Later, rats were sacrificed for biochemical parameters, pro-inflammatory cytokines, choline acetyltransferase (ChAT) expression and neuronal loss in the CA1 region of the hippocampus. The results showed that SA 20 mg/kg significantly (p < 0.05) improved cognitive impairment as assessed by Morris water maze and passive avoidance tests. SA 20 mg/kg reinstated the altered levels of GSH, MDA, TNF-α and IL-1β in the cortex and hippocampus. STZ-induced decreased expression of ChAT and neuronal loss were also significantly (p < 0.05) improved with SA. Our results showed that SA exhibits neuro-protection against ICV-STZ induced oxidative stress, neuro-inflammation, cholinergic dysfunction and neuronal loss, suggesting its potential in improving learning and memory in patients of AD.


Sign in / Sign up

Export Citation Format

Share Document