scholarly journals The emerging possibility of the use of geniposide in the treatment of cerebral diseases: a review

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wenwen Zhang ◽  
Fangling Zhang ◽  
Qichao Hu ◽  
Xiaolin Xiao ◽  
Linbo Ou ◽  
...  

AbstractWith the advanced discoveries in the field of pathogenesis, a series of cerebral diseases, such as cerebral ischaemia, Alzheimer's disease, and depression, have been found to have multiple signalling targets in the microenvironment. Only a few existing agents have been shown to have curative effects due to this specific circumstance. In recent decades, active ingredients isolated from natural plants have been shown to be crucial for original drug development. Geniposide, mainly extracted from Gardenia jasminoides Ellis, is representative of these natural products. Geniposide demonstrates various biological activities in the treatment of cerebral, cardiovascular, hepatic, tumorous, and other diseases. The multiple protective effects of geniposide on the brain have especially drawn increasing attention. Thus, this article specifically reviews the characteristics of current models of cerebral ischaemia and illustrates the possible effects of geniposide and its pathogenetic mechanisms on these models. Geniposide has been shown to significantly reduce the area of cerebral infarction and alleviate neuronal damage and necrosis mainly by inhibiting inflammatory signals, including NLRP3, TNF-α, IL-6, and IL-1β. Neuronal protection was also involved in activating the PI3K/Akt and Wnt/catenin pathways. Geniposide was able to increase autophagy and inhibit apoptosis by regulating the function of mTOR in treating Alzheimer's disease. Geniposide has also been shown to act as a glucagon-like peptide-1 receptor (GLP-1R) agonist to reduce amyloid plaques and inhibit oxidative stress to alleviate memory impairment as well as synaptic loss. Moreover, geniposide has been shown to exert antidepressant effects primarily by regulating the hypothalamic–pituitary–adrenal (HPA) axis. Detailed explorations have shown that the biological activities of inhibiting inflammatory cytokine secretion, alleviating oxidative stress, and suppressing mitochondrial damage are also involved in the mechanism of action of geniposide. Therefore, geniposide is a promising agent awaiting further exploration for the treatment of cerebral diseases via various phenotypes or signalling pathways.

2018 ◽  
Vol 17 (6) ◽  
pp. 421-429 ◽  
Author(s):  
Tanveer Beg ◽  
Smita Jyoti ◽  
Falaq Naz ◽  
Rahul ◽  
Fahad Ali ◽  
...  

Background: Alzheimer’s disease (AD) is characterized by the accumulation and deposition of β-amyloid peptides leading to a progressive neuronal damage and cell loss. Besides several hypotheses for explaining the neurodegenerative mechanisms, oxidative stress has been considered to be one of them. Till date, there is no cure for AD, but the pathogenesis of the disease could be delayed by the use of natural antioxidants. In this context, we decided to study the effect of kaempferol against the transgenic Drosophila expressing human amyloid beta-42. Method: The AD flies were allowed to feed on the diet having 10, 20, 30 and 40µM of kaempferol for 30 days. After 30 days of exposure, the amyloid beta flies were studied for their climbing ability and Aversive Phototaxis Suppression assay. Amyloid beta flies head homogenate was prepared for estimating the oxidative stress markers, Caspase and acetylcholinesterase activity. Results: The results of the present study reveal that the exposure of AD flies to kaempferol delayed the loss of climbing ability, memory, reduced the oxidative stress and acetylcholinesterase activity. Conclusion: Kaempferol could be used as a possible therapeutic agent against the progression of the Alzheimer’s disease.


2021 ◽  
Vol 19 ◽  
Author(s):  
O.A. Nedogreeva ◽  
N.A. Evtushenko ◽  
A.O. Manolova ◽  
D.I. Peregud ◽  
A.A. Yakovlev ◽  
...  

Background: The development of cholinergic deficit is considered an early sign of a number of pathological conditions, including Alzheimer’s disease. Cholinergic dysfunction underlies cognitive decline associated with both normal aging and Alzheimer’s disease. Objective: Here, we studied a possible mechanism of functional impairment of cholinergic neurons using an olfactory bulbectomy model. Methods: Male mice were subjected to olfactory bulbectomy or sham surgery. Three weeks after that they were trained in Morris water maze and then euthanized one month after surgery. The cholinergic indices as well as the indices of oxidative stress were studied using immunohistochemistry, western blot and ELISA. Gene expression was studied using RT-qPCR. Results: The experimental treatment was followed by impaired learning of a standard spatial task in a water maze. This was associated with a decrease in the number of cells containing choline acetyltransferase (ChAT), in relation to total number of neurons in the medial septum and lower ChAT enzymatic activity in the hippocampus. However, the levels of mRNAs of ChAT, vesicular ACh transporter and acetylcholine esterase remained unchanged in bulbectomized mice compared to sham-operated animals. These alterations were preceded by the accumulation of protein-bound carbonyls, indicating oxidative damage of proteins, whereas oxidative damage of nucleic acids was not detected. Conclusion: We assume that in olfactory bulbectomy model, oxidative damage of proteins may cause cholinergic dysfunction rather than irreversible neuronal damage. These data indicate that cholinergic neurons of the basal forebrain are very sensitive to oxidative stress, which may be responsible for the appearance of early cognitive decline in Alzheimer’s disease.


Aging Cell ◽  
2011 ◽  
Vol 10 (3) ◽  
pp. 403-417 ◽  
Author(s):  
Paola Gamba ◽  
Gabriella Leonarduzzi ◽  
Elena Tamagno ◽  
Michela Guglielmotto ◽  
Gabriella Testa ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mamdooh H. Ghoneum ◽  
Nesrine S. El Sayed

Alzheimer’s disease (AD) is a debilitating and irreversible brain disease that affects an increasing number of aged individuals, mandating the development of protective nutraceuticals. Biobran/MGN-3, an arabinoxylan from rice bran, has potent antioxidant, antiaging, and immunomodulatory effects. The aim of the present study was to investigate the protective effect of Biobran against sporadic Alzheimer’s disease (SAD). SAD was induced in mice via intracerebroventricular injection of streptozotocin (STZ) (3 mg/kg). STZ-treated mice were administered with Biobran for 21 days. The effects of Biobran on memory and learning were measured via the Morris water maze, novel object recognition, and Y-maze tests. Biomarkers for apoptosis, oxidative stress, and amyloidogenesis were measured using ELISA and western blot analysis. Histopathological examination was performed to confirm neuronal damage and amyloid-beta deposition. Biobran reversed the spatial memory deficit in SAD-induced mice, and it increased the expression of glutathione, reduced malondialdehyde, decreased IL-6, decreased intercellular adhesion molecule-1 (ICAM-1), and significantly increased nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE). Moreover, Biobran exerted a protective effect against amyloid-beta-induced apoptosis via the suppression of both cleaved caspase-3 and the proapoptotic protein Bax and via the upregulation of the antiapoptotic protein Bcl-2. Furthermore, it reduced the expression of forkhead box class O proteins. It could be concluded from this study that Biobran may be a useful nutritional antioxidant agent for protection against SAD through its activation of the gene expression of Nrf2/ARE, which in turn modulates the apoptotic and amyloidogenic pathways.


2021 ◽  
Vol 17 (6) ◽  
pp. 1088-1097
Author(s):  
Yaohui Zhang ◽  
Lixiang Wang ◽  
Guichen Li ◽  
Jianyuan Gao

Berberine has shown an outstanding antioxidant activity, however the low bioavailability limits its applications in pharmaceutical platforms. Therefore, in this paper, after fabrication of the berberine-HSA nanoparticles by desolvation method, they were well characterized by TEM, SEM, DLS, and FTIR techniques. Afterwards the interaction of HSA and the berberine was evaluated by molecular docking analysis. Finally, the antioxidant activity of the berberine-HSA nanoparticles against H2O2-induced oxidative stress in cultured neurons as a model of AD was evaluated by cellular assays. The results showed that the prepared berberine-HSA nanoparticles have a spherical-shaped morphology with a size of around 100 nm and zeta potential value of −31.84 mV. The solubility value of nanoparticles was calculated to be 40.27%, with a berberine loading of 19.37%, berberine entrapment efficiency of 70.34%, and nanoparticles yield of 88.91%. Also, it was shown that the berberine is not significantly released from HSA nanoparticles within 24 hours. Afterwards, molecular docking investigation revealed that berberine spontaneously interacts with HSA through electrostatic interaction. Finally, cellular assays disclosed that the pretreatment of neuronal cultures with berberine-HSA nanoparticles decreased the H2O2-stimulated cytotoxicity and relevant morphological changes and enhanced the CAT activity. In conclusion, it can be indicated that the nanoformulation of the berberine can be used as a promising platform for inhibition of oxidative damage-induced Alzheimer’s disease (AD).


2020 ◽  
Vol 10 (12) ◽  
pp. 923
Author(s):  
Vandna Verma ◽  
Devendra Singh ◽  
Reeta KH

The role of oxidative stress, neuro-inflammation and cholinergic dysfunction is already established in the development of Alzheimer’s disease (AD). Sinapic acid (SA), a hydroxylcinnamic acid derivative, has shown neuro-protective effects. The current study evaluates the neuro-protective potential of SA in intracerebroventricular streptozotocin (ICV-STZ) induced cognitive impairment in rats. Male Wistar rats were bilaterally injected with ICV-STZ. SA was administered intragastrically once daily for three weeks. Rats were divided into sham, ICV-STZ, STZ + SA (10 mg/kg), STZ + SA (20 mg/kg) and SA per se (20 mg/kg). Behavioral tests were assessed on day 0 and 21 days after STZ. Later, rats were sacrificed for biochemical parameters, pro-inflammatory cytokines, choline acetyltransferase (ChAT) expression and neuronal loss in the CA1 region of the hippocampus. The results showed that SA 20 mg/kg significantly (p < 0.05) improved cognitive impairment as assessed by Morris water maze and passive avoidance tests. SA 20 mg/kg reinstated the altered levels of GSH, MDA, TNF-α and IL-1β in the cortex and hippocampus. STZ-induced decreased expression of ChAT and neuronal loss were also significantly (p < 0.05) improved with SA. Our results showed that SA exhibits neuro-protection against ICV-STZ induced oxidative stress, neuro-inflammation, cholinergic dysfunction and neuronal loss, suggesting its potential in improving learning and memory in patients of AD.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Diana Luque-Contreras ◽  
Karla Carvajal ◽  
Danira Toral-Rios ◽  
Diana Franco-Bocanegra ◽  
Victoria Campos-Peña

Alzheimer’s disease (AD) is a major neurodegenerative disease affecting the elderly. Clinically, it is characterized by a progressive loss of memory and cognitive function. Neuropathologically, it is characterized by the presence of extracellularβ-amyloid (Aβ) deposited as neuritic plaques (NP) and neurofibrillary tangles (NFT) made of abnormal and hyperphosphorylated tau protein. These lesions are capable of generating the neuronal damage that leads to cell death and cognitive failure through the generation of reactive oxygen species (ROS). Evidence indicates the critical role of Aβmetabolism in prompting the oxidative stress observed in AD patients. However, it has also been proposed that oxidative damage precedes the onset of clinical and pathological AD symptoms, including amyloid-βdeposition, neurofibrillary tangle formation, vascular malfunction, metabolic syndrome, and cognitive decline. This paper provides a brief description of the three main proteins associated with the development of the disease (Aβ, tau, and ApoE) and describes their role in the generation of oxidative stress. Finally, we describe the mitochondrial alterations that are generated by Aβand examine the relationship of vascular damage which is a potential prognostic tool of metabolic syndrome. In addition, new therapeutic approaches targeting ROS sources and metabolic support were reported.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Victor Bodart-Santos ◽  
Luiza R. P. de Carvalho ◽  
Mariana A. de Godoy ◽  
André F. Batista ◽  
Leonardo M. Saraiva ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) have been explored as promising tools for treatment of several neurological and neurodegenerative diseases. MSCs release abundant extracellular vesicles (EVs) containing a variety of biomolecules, including mRNAs, miRNAs, and proteins. We hypothesized that EVs derived from human Wharton’s jelly would act as mediators of the communication between hMSCs and neurons and could protect hippocampal neurons from damage induced by Alzheimer’s disease-linked amyloid beta oligomers (AβOs). Methods We isolated and characterized EVs released by human Wharton’s jelly mesenchymal stem cells (hMSC-EVs). The neuroprotective action of hMSC-EVs was investigated in primary hippocampal cultures exposed to AβOs. Results hMSC-EVs were internalized by hippocampal cells in culture, and this was enhanced in the presence of AβOs in the medium. hMSC-EVs protected hippocampal neurons from oxidative stress and synapse damage induced by AβOs. Neuroprotection by hMSC-EVs was mediated by catalase and was abolished in the presence of the catalase inhibitor, aminotriazole. Conclusions hMSC-EVs protected hippocampal neurons from damage induced by AβOs, and this was related to the transfer of enzymatically active catalase contained in EVs. Results suggest that hMSC-EVs should be further explored as a cell-free therapeutic approach to prevent neuronal damage in Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document