Protein-Protein Interactions of Phosphodiesterases

2019 ◽  
Vol 19 (7) ◽  
pp. 555-564 ◽  
Author(s):  
Mayasah Y. Al-Nema ◽  
Anand Gaurav

Background: Phosphodiesterases (PDEs) are enzymes that play a key role in terminating cyclic nucleotides signalling by catalysing the hydrolysis of 3’, 5’- cyclic adenosine monophosphate (cAMP) and/or 3’, 5’ cyclic guanosine monophosphate (cGMP), the second messengers within the cell that transport the signals produced by extracellular signalling molecules which are unable to get into the cells. However, PDEs are proteins which do not operate alone but in complexes that made up of a many proteins. Objective: This review highlights some of the general characteristics of PDEs and focuses mainly on the Protein-Protein Interactions (PPIs) of selected PDE enzymes. The objective is to review the role of PPIs in the specific mechanism for activation and thereby regulation of certain biological functions of PDEs. Methods: Methods The article discusses some of the PPIs of selected PDEs as reported in recent scientific literature. These interactions are critical for understanding the biological role of the target PDE. Results: The PPIs have shown that each PDE has a specific mechanism for activation and thereby regulation a certain biological function. Conclusion: Targeting of PDEs to specific regions of the cell is based on the interaction with other proteins where each PDE enzyme binds with specific protein(s) via PPIs.

2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2021 ◽  
Author(s):  
Nikolaj Riis Christensen ◽  
Christian Parsbæk Pedersen ◽  
Vita Sereikaite ◽  
Jannik Nedergaard Pedersen ◽  
Maria Vistrup-Parry ◽  
...  

SUMMARYThe organization of the postsynaptic density (PSD), a protein-dense semi-membraneless organelle, is mediated by numerous specific protein-protein interactions (PPIs) which constitute a functional post-synapse. Postsynaptic density protein 95 (PSD-95) interacts with a manifold of proteins, including the C-terminal of transmembrane AMPA receptor (AMAPR) regulatory proteins (TARPs). Here, we uncover the minimal essential peptide responsible for the stargazin (TARP-γ2) mediated liquid-liquid phase separation (LLPS) formation of PSD-95 and other key protein constituents of the PSD. Furthermore, we find that pharmacological inhibitors of PSD-95 can facilitate formation of LLPS. We found that in some cases LLPS formation is dependent on multivalent interactions while in other cases short peptides carrying a high charge are sufficient to promote LLPS in complex systems. This study offers a new perspective on PSD-95 interactions and their role in LLPS formation, while also considering the role of affinity over multivalency in LLPS systems.


Author(s):  
Ulrike Schmidt

Second messengers such as cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), inositoltriphosphate, and diacylglycerol (DAG) are a prerequisite for the signal transduction of extracellular receptors. The latter are central for cellular function and thus are implicated in the pathobiology of a variety of disorders, such as schizophrenia, bipolar disorder, major depression, and post-traumatic stress disorder (PTSD). This chapter focuses on the involvement of second messenger molecules and their regulators as direct targets in human and animal PTSD and aims to stimulate the underdeveloped research in this field. The synthesis of literature reveals that second messengers clearly play a central role in PTSD-associated brain regions and processes. In particular, pituitary adenylate cyclase-activating polypeptide (PACAP), an important regulator of intracellular cAMP levels, as well as protein kinase c, the major target of DAG, belong to the hitherto most promising PTSD candidate molecules directly involved in second messenger signaling.


Inorganics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 85 ◽  
Author(s):  
Yap Shing Nim ◽  
Kam-Bo Wong

Maturation of urease involves post-translational insertion of nickel ions to form an active site with a carbamylated lysine ligand and is assisted by urease accessory proteins UreD, UreE, UreF and UreG. Here, we review our current understandings on how these urease accessory proteins facilitate the urease maturation. The urease maturation pathway involves the transfer of Ni2+ from UreE → UreG → UreF/UreD → urease. To avoid the release of the toxic metal to the cytoplasm, Ni2+ is transferred from one urease accessory protein to another through specific protein–protein interactions. One central theme depicts the role of guanosine triphosphate (GTP) binding/hydrolysis in regulating the binding/release of nickel ions and the formation of the protein complexes. The urease and [NiFe]-hydrogenase maturation pathways cross-talk with each other as UreE receives Ni2+ from hydrogenase maturation factor HypA. Finally, the druggability of the urease maturation pathway is reviewed.


2017 ◽  
Vol 41 (S1) ◽  
pp. S641-S642
Author(s):  
D. Marazziti ◽  
S. Baroni ◽  
F. Mucci ◽  
L. Palego ◽  
A. Piccinni

IntroductionA possible role of second messengers, such as cyclic adenosine monophosphate (cAMP) signalling, in the development of obsessive-compulsive disorder (OCD) has been recently postulated.AimsThe aim of the present study was to explore and to compare the adenylate cyclase (AC) activity in both basal conditions and after the stimulation by isoprenaline (ISO) in platelets of OCD patients and healthy control subjects. The AC activity was measured both in the absence and in the presence of α- and β- adrenoreceptor antagonists.Materials and methodsForty patients were included in the study and compared with healthy volunteers. Biological assays were carried out with a method developed by us.ResultsThe basal AC activity was similar in both groups. The addition of 10 μM ISO enhanced significantly (P < .05) platelet basal AC in both groups. A stimulatory response following ISO in all subjects even without α-antagonists was also observed.DiscussionNo difference in the basal AC activity in platelet membranes of healthy subjects and OCD patients was found. Our findings showed that there is an inhibitory component of ISO effect on platelet AC, due to the agonist interaction with α2 receptors, at its higher concentrations (>1 μM), as well as a condition of supersensitive β-receptors. Our study suggests the presence of cathecolamine system disturbances in OCD.Disclosure of interestThe authors have not supplied their declaration of competing interest.


1995 ◽  
Vol 15 (10) ◽  
pp. 5214-5225 ◽  
Author(s):  
A D Catling ◽  
H J Schaeffer ◽  
C W Reuter ◽  
G R Reddy ◽  
M J Weber

Mammalian MEK1 and MEK2 contain a proline-rich (PR) sequence that is absent both from the yeast homologs Ste7 and Byr1 and from a recently cloned activator of the JNK/stress-activated protein kinases, SEK1/MKK4. Since this PR sequence occurs in MEKs that are regulated by Raf family enzymes but is missing from MEKs and SEKs activated independently of Raf, we sought to investigate the role of this sequence in MEK1 and MEK2 regulation and function. Deletion of the PR sequence from MEK1 blocked the ability of MEK1 to associate with members of the Raf family and markedly attenuated activation of the protein in vivo following growth factor stimulation. In addition, this sequence was necessary for efficient activation of MEK1 in vitro by B-Raf but dispensable for activation by a novel MEK1 activator which we have previously detected in fractionated fibroblast extracts. Furthermore, we found that a phosphorylation site within the PR sequence of MEK1 was required for sustained MEK1 activity in response to serum stimulation of quiescent fibroblasts. Consistent with this observation, we observed that MEK2, which lacks a phosphorylation site at the corresponding position, was activated only transiently following serum stimulation. Finally, we found that deletion of the PR sequence from a constitutively activated MEK1 mutant rendered the protein nontransforming in Rat1 fibroblasts. These observations indicate a critical role for the PR sequence in directing specific protein-protein interactions important for the activation, inactivation, and downstream functioning of the MEKs.


2020 ◽  
Vol 134 (24) ◽  
pp. 3259-3282
Author(s):  
Alessandra Murabito ◽  
Sophie Cnudde ◽  
Emilio Hirsch ◽  
Alessandra Ghigo

Abstract The 3′–5′-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein–protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.


Blood ◽  
2005 ◽  
Vol 106 (5) ◽  
pp. 1629-1635 ◽  
Author(s):  
Omid Safa ◽  
Charles T. Esmon ◽  
Naomi L. Esmon

Abstract Activated protein C (APC) anticoagulant activity and the ability to be inhibited by auto-antibodies associated with thrombosis are strongly augmented by the presence of phosphatidylethanolamine (PE) and phospholipid oxidation. β2-glycoprotein I (β2-GPI) is a major antigen for antiphospholipid antibodies present in patients with the antiphospholipid syndrome. We therefore investigated whether anti–β2-GPI monoclonal antibodies (mAbs) could inhibit APC with similar membrane specificity. Five mouse mAbs that reacted with different epitopes on β2-GPI were examined. Each inhibited the PE-, phospholipid oxidation–dependent enhancement of APC anticoagulant activity and required antibody divalency. A chimeric APC that retains anticoagulant activity but is relatively unaffected by protein S, PE, or oxidation was not inhibited by the antibodies. In purified systems, anti–β2-GPI mAb inhibition of factor Va inactivation was greater in the presence of protein S and required β2-GPI. Surprisingly, although the mAbs did increase β2-GPI affinity for membranes, PE and oxidation had little influence on the affinity of the β2-GPI antibody complex for the membrane vesicles. We conclude that antibodies to β2-GPI inhibit APC function specifically and contribute to a hypercoaguable state by disrupting specific protein-protein interactions induced by oxidation of PE-containing membranes.


Sign in / Sign up

Export Citation Format

Share Document