Potential therapeutic applications of AKAP disrupting peptides

2020 ◽  
Vol 134 (24) ◽  
pp. 3259-3282
Author(s):  
Alessandra Murabito ◽  
Sophie Cnudde ◽  
Emilio Hirsch ◽  
Alessandra Ghigo

Abstract The 3′–5′-cyclic adenosine monophosphate (cAMP)/PKA pathway represents a major target for pharmacological intervention in multiple disease conditions. Although the last decade saw the concept of highly compartmentalized cAMP/PKA signaling consolidating, current means for the manipulation of this pathway still do not allow to specifically intervene on discrete cAMP/PKA microdomains. Since compartmentalization is crucial for action specificity, identifying new tools that allow local modulation of cAMP/PKA responses is an urgent need. Among key players of cAMP/PKA signaling compartmentalization, a major role is played by A-kinase anchoring proteins (AKAPs) that, by definition, anchor PKA, its substrates and its regulators within multiprotein complexes in well-confined subcellular compartments. Different tools have been conceived to interfere with AKAP-based protein–protein interactions (PPIs), and these primarily include peptides and peptidomimetics that disrupt AKAP-directed multiprotein complexes. While these molecules have been extensively used to understand the molecular mechanisms behind AKAP function in pathophysiological processes, less attention has been devoted to their potential application for therapy. In this review, we will discuss how AKAP-based PPIs can be pharmacologically targeted by synthetic peptides and peptidomimetics.

2019 ◽  
Vol 19 (7) ◽  
pp. 555-564 ◽  
Author(s):  
Mayasah Y. Al-Nema ◽  
Anand Gaurav

Background: Phosphodiesterases (PDEs) are enzymes that play a key role in terminating cyclic nucleotides signalling by catalysing the hydrolysis of 3’, 5’- cyclic adenosine monophosphate (cAMP) and/or 3’, 5’ cyclic guanosine monophosphate (cGMP), the second messengers within the cell that transport the signals produced by extracellular signalling molecules which are unable to get into the cells. However, PDEs are proteins which do not operate alone but in complexes that made up of a many proteins. Objective: This review highlights some of the general characteristics of PDEs and focuses mainly on the Protein-Protein Interactions (PPIs) of selected PDE enzymes. The objective is to review the role of PPIs in the specific mechanism for activation and thereby regulation of certain biological functions of PDEs. Methods: Methods The article discusses some of the PPIs of selected PDEs as reported in recent scientific literature. These interactions are critical for understanding the biological role of the target PDE. Results: The PPIs have shown that each PDE has a specific mechanism for activation and thereby regulation a certain biological function. Conclusion: Targeting of PDEs to specific regions of the cell is based on the interaction with other proteins where each PDE enzyme binds with specific protein(s) via PPIs.


2021 ◽  
Vol 22 (14) ◽  
pp. 7256
Author(s):  
Vianet Argelia Tello-Flores ◽  
Fredy Omar Beltrán-Anaya ◽  
Marco Antonio Ramírez-Vargas ◽  
Brenda Ely Esteban-Casales ◽  
Napoleón Navarro-Tito ◽  
...  

Long non-coding RNAs (lncRNAs) are single-stranded RNA biomolecules with a length of >200 nt, and they are currently considered to be master regulators of many pathological processes. Recent publications have shown that lncRNAs play important roles in the pathogenesis and progression of insulin resistance (IR) and glucose homeostasis by regulating inflammatory and lipogenic processes. lncRNAs regulate gene expression by binding to other non-coding RNAs, mRNAs, proteins, and DNA. In recent years, several mechanisms have been reported to explain the key roles of lncRNAs in the development of IR, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), imprinted maternal-ly expressed transcript (H19), maternally expressed gene 3 (MEG3), myocardial infarction-associated transcript (MIAT), and steroid receptor RNA activator (SRA), HOX transcript antisense RNA (HOTAIR), and downregulated Expression-Related Hexose/Glucose Transport Enhancer (DREH). LncRNAs participate in the regulation of lipid and carbohydrate metabolism, the inflammatory process, and oxidative stress through different pathways, such as cyclic adenosine monophosphate/protein kinase A (cAMP/PKA), phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), polypyrimidine tract-binding protein 1/element-binding transcription factor 1c (PTBP1/SREBP-1c), AKT/nitric oxide synthase (eNOS), AKT/forkhead box O1 (FoxO1), and tumor necrosis factor-alpha (TNF-α)/c-Jun-N-terminal kinases (JNK). On the other hand, the mechanisms linked to the molecular, cellular, and biochemical actions of lncRNAs vary according to the tissue, biological species, and the severity of IR. Therefore, it is essential to elucidate the role of lncRNAs in the insulin signaling pathway and glucose and lipid metabolism. This review analyzes the function and molecular mechanisms of lncRNAs involved in the development of IR.


2018 ◽  
Vol 25 (1) ◽  
pp. 5-21 ◽  
Author(s):  
Ylenia Cau ◽  
Daniela Valensin ◽  
Mattia Mori ◽  
Sara Draghi ◽  
Maurizio Botta

14-3-3 is a class of proteins able to interact with a multitude of targets by establishing protein-protein interactions (PPIs). They are usually found in all eukaryotes with a conserved secondary structure and high sequence homology among species. 14-3-3 proteins are involved in many physiological and pathological cellular processes either by triggering or interfering with the activity of specific protein partners. In the last years, the scientific community has collected many evidences on the role played by seven human 14-3-3 isoforms in cancer or neurodegenerative diseases. Indeed, these proteins regulate the molecular mechanisms associated to these diseases by interacting with (i) oncogenic and (ii) pro-apoptotic proteins and (iii) with proteins involved in Parkinson and Alzheimer diseases. The discovery of small molecule modulators of 14-3-3 PPIs could facilitate complete understanding of the physiological role of these proteins, and might offer valuable therapeutic approaches for these critical pathological states.


2008 ◽  
Vol 190 (18) ◽  
pp. 6048-6059 ◽  
Author(s):  
Carine Robichon ◽  
Glenn F. King ◽  
Nathan W. Goehring ◽  
Jon Beckwith

ABSTRACT Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.


2008 ◽  
Vol 412 (1) ◽  
pp. 163-170 ◽  
Author(s):  
Alon Herschhorn ◽  
Iris Oz-Gleenberg ◽  
Amnon Hizi

The RT (reverse transcriptase) of HIV-1 interacts with HIV-1 IN (integrase) and inhibits its enzymatic activities. However, the molecular mechanisms underling these interactions are not well understood. In order to study these mechanisms, we have analysed the interactions of HIV-1 IN with HIV-1 RT and with two other related RTs: those of HIV-2 and MLV (murine-leukaemia virus). All three RTs inhibited HIV-1 IN, albeit to a different extent, suggesting a common site of binding that could be slightly modified for each one of the studied RTs. Using surface plasmon resonance technology, which monitors direct protein–protein interactions, we performed kinetic analyses of the binding of HIV-1 IN to these three RTs and observed interesting binding patterns. The interaction of HIV-1 RT with HIV-1 IN was unique and followed a two-state reaction model. According to this model, the initial IN–RT complex formation was followed by a conformational change in the complex that led to an elevation of the total affinity between these two proteins. In contrast, HIV-2 and MLV RTs interacted with IN in a simple bi-molecular manner, without any apparent secondary conformational changes. Interestingly, HIV-1 and HIV-2 RTs were the most efficient inhibitors of HIV-1 IN activity, whereas HIV-1 and MLV RTs showed the highest affinity towards HIV-1 IN. These modes of direct protein interactions, along with the apparent rate constants calculated and the correlations of the interaction kinetics with the capacity of the RTs to inhibit IN activities, are all discussed.


2021 ◽  
Vol 72 (3) ◽  
pp. 30-36
Author(s):  
Tatjana Simić

Studies of the molecular mechanisms regarding interaction of different viruses with receptors on the host cell surface have shown that the viral entry depends on the specific relationship between free thiol (SH) groups and disulfides on the virus surface, as well as the thiol disulfide balance on the host cell surface. The presence of oxidizing compounds or alkylating agents, which disturb the thiol-disulfide balance on the surface of the virus, can also affect its infectious potential. Disturbed thiol-disulfide balance may also influence protein-protein interactions between SARS-CoV-2 protein S and ACE2 receptors of the host cell. This review presents the basic mechanisms of maintaining intracellular and extracellular thiol disulfide balance and previous experimental and clinical evidence in favor of impaired balance in SARS-CoV-2 infection. Besides, the results of the clinical application or experimental analysis of compounds that induce changes in the thiol disulfide balance towards reduction of disulfide bridges in proteins of interest in COVID-19 infection are presented.


2004 ◽  
Vol 279 (19) ◽  
pp. 20186-20193 ◽  
Author(s):  
Hirofumi Kurokawa ◽  
Dong-Sun Lee ◽  
Miki Watanabe ◽  
Ikuko Sagami ◽  
Bunzo Mikami ◽  
...  

PAS domains, which have been identified in over 1100 proteins from all three kingdoms of life, convert various input stimuli into signals that propagate to downstream components by modifying protein-protein interactions. One such protein is theEscherichia coliredox sensor,EcDOS, a phosphodiesterase that degrades cyclic adenosine monophosphate in a redox-dependent manner. Here we report the crystal structures of the heme PAS domain ofEcDOS in both inactive Fe3+and active Fe2+forms at 1.32 and 1.9 Å resolution, respectively. The protein folds into a characteristic PAS domain structure and forms a homodimer. In the Fe3+form, the heme iron is ligated to a His-77 side chain and a water molecule. Heme iron reduction is accompanied by heme-ligand switching from the water molecule to a side chain of Met-95 from the FG loop. Concomitantly, the flexible FG loop is significantly rigidified, along with a change in the hydrogen bonding pattern and rotation of subunits relative to each other. The present data led us to propose a novel redox-regulated molecular switch in which local heme-ligand switching may trigger a global “scissor-type” subunit movement that facilitates catalytic control.


2018 ◽  
Vol 15 (4) ◽  
Author(s):  
Olga V. Saik ◽  
Pavel S. Demenkov ◽  
Timofey V. Ivanisenko ◽  
Elena Yu. Bragina ◽  
Maxim B. Freidin ◽  
...  

AbstractComorbid states of diseases significantly complicate diagnosis and treatment. Molecular mechanisms of comorbid states of asthma and hypertension are still poorly understood. Prioritization is a way for identifying genes involved in complex phenotypic traits. Existing methods of prioritization consider genetic, expression and evolutionary data, molecular-genetic networks and other. In the case of molecular-genetic networks, as a rule, protein-protein interactions and KEGG networks are used. ANDSystem allows reconstructing associative gene networks, which include more than 20 types of interactions, including protein-protein interactions, expression regulation, transport, catalysis, etc. In this work, a set of genes has been prioritized to find genes potentially involved in asthma and hypertension comorbidity. The prioritization was carried out using well-known methods (ToppGene and Endeavor) and a cross-talk centrality criterion, calculated by analysis of associative gene networks from ANDSystem. The identified genes, including IL1A, CD40LG, STAT3, IL15, FAS, APP, TLR2, C3, IL13 and CXCL10, may be involved in the molecular mechanisms of comorbid asthma/hypertension. An analysis of the dynamics of the frequency of mentioning the most priority genes in scientific publications revealed that the top 100 priority genes are significantly enriched with genes with increased positive dynamics, which may be a positive sign for further studies of these genes.


Sign in / Sign up

Export Citation Format

Share Document