Sustainable catalyst-free N-formylation using CO2 as a carbon source

2021 ◽  
Vol 18 ◽  
Author(s):  
Zhengyi Li ◽  
Song Yang ◽  
Hu Li

: The development of new sustainable catalytic conversion methods of carbon dioxide (CO2) is of great interest in the synthesis of valuable chemicals. N-formylation of CO2 with amine nucleophiles as substrates has been studied in depth. The key to benign formylation is to select a suitable reducing agent to activate CO2. This paper showcases the activation modes of CO2 and the construction strategies of sustainable and catalyst-free N-formylation systems. The research progress of catalyst-free N-formylation of amines and CO2 is reviewed. There are two broad prominent categories, namely reductive amidation of CO2 facilitated by organic solvents and ionic liquids in the presence of hydrosilane. Attention is also paid to discussing the involved reaction mechanism with practical applications and identifying the remaining challenges in this field.

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6962
Author(s):  
Sulafa Abdalmageed Saadaldeen Mohammed ◽  
Wan Zaireen Nisa Yahya ◽  
Mohamad Azmi Bustam ◽  
Md Golam Kibria

The electrochemical reduction of carbon dioxide (CO2ER) is amongst one the most promising technologies to reduce greenhouse gas emissions since carbon dioxide (CO2) can be converted to value-added products. Moreover, the possibility of using a renewable source of energy makes this process environmentally compelling. CO2ER in ionic liquids (ILs) has recently attracted attention due to its unique properties in reducing overpotential and raising faradaic efficiency. The current literature on CO2ER mainly reports on the effect of structures, physical and chemical interactions, acidity, and the electrode–electrolyte interface region on the reaction mechanism. However, in this work, new insights are presented for the CO2ER reaction mechanism that are based on the molecular interactions of the ILs and their physicochemical properties. This new insight will open possibilities for the utilization of new types of ionic liquids. Additionally, the roles of anions, cations, and the electrodes in the CO2ER reactions are also reviewed.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Aliaa Anzian ◽  
Belal J. Muhialdin ◽  
Nameer Khairullah Mohammed ◽  
Hana Kadum ◽  
Anis Asyila Marzlan ◽  
...  

The aim of this study was to identify the bioactive compound and evaluate the antibacterial activity of torch ginger flower oil extracted using subcritical carbon dioxide. The antibacterial activity was evaluated in agar diffusion assay, while MIC and MBC were determined using the microdilution broth assay. The essential oil was subjected to metabolomics profiling using GC-MS and 1H-NMR techniques. The results demonstrated strong antibacterial activity towards Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. The MIC values were 0.0625, 0.25, and 0.25 mg/mL, and the MBC values were 0.25, 0.5, and 1 mg/mL towards S. typhimurium, S. aureus, and E. coli, respectively. A total of 33 compounds were identified using GC-MS including 15 compounds (45%) known for their antimicrobial activity. In addition, sixteen metabolites were identified using NMR analysis and 8 out of the sixteen metabolites (50%) have antibacterial activity. The extracted oil demonstrated broad range for antibacterial activity and has high potential for applications in pharmaceutical and food industries. Practical Applications. The oil extracted from the torch ginger flower was found very stable and has promising applications as antibacterial agent for food and pharmaceutical industries.


2016 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Nida Sopiah ◽  
Adi Mulyanto ◽  
Sindi Sehabudin

Chlorella sp. is a single-cell microalgae that lives in aquatic environment. It grows and developsby making use of sunlight as an energy source and carbon dioxide (CO2) as carbon source. Chlorella sp. can be utilized as biological agents in reducing CO2 gas emissions in the atmosphere. The purpose of this experiment was to assess the influence of microalgae’sincreasing density to its capability in absorbing CO2.The air which contains CO2 was injected to aclosed photobioreactor intermittently by an aerator. The flow rate applied was 2.5 liters/minute.Research result identified that amount of CO2 sequestered by Chlorella sp. in photobioreactor system was equal with increasing of microalgae biomass density. Sequestration of CO2 inphotobioreactor significantly increased at the afternoon because occurring of photosynthesis process. This phenomenon was identified by difference of CO2 concentration during morning andafternoon toward photobioreactor number 1, 2, and 3. The difference was in between 0.15 % -2.40 %; 0.05 % - 2.30 %; and 0.51 % - 2.74 % respectively. Capability of cell on sequestering ofCO2 increased amounting of 102 – 167.2 % per day.Keywords: Chlorella sp, carbondioxide, sequestration, microalgae abundanceAbstrak Chlorella sp. merupakan mikroalgae bersel tunggal yang hidup di lingkungan perairan, tumbuh dan berkembang dengan memanfaatkan sinar matahari sebagai sumber energi dankarbondioksida sebagai sumber karbon. Chlorella sp. dapat dimanfaatkan sebagai agensia hayati dalam menurunkan emisi gas CO2 di atmosfer. Tujuan dari penelitian adalah untuk mengkajipengaruh kelimpahan Chlorella sp. terhadap penambatan karbon dioksida dalam mereduksi emisi karbondioksida. Pada penelitian ini, gas CO2 diinjeksikan ke dalam fotobioreaktor sistemtertutup dengan sistem intermiten dan supply oksigen menggunakan aerator dengan debit sebesar 2,5 liter/menit. Hasil Penelitian menunjukkan bahwa jumlah karbondioksida yangditambat oleh Chlorella sp. dalam sistem fotobioreaktor setara dengan penambahan kelimpahan biomassa mikroalgae. Panambatan karbondioksida pada fotobioreaktor mengalami peningkatansangat signifikan pada siang hari karena adanya proses fotosintesis yang ditunjukkan dengan adanya selisih konsentrasi CO2 saat pagi dan sore hari pada masing-masing fotobioreaktor 1, 2 dan 3 berkisar antara 0,15 % - 2,40 %; 0,05 % - 2,30 % dan 0,51 % - 2,74 %. Sedangkanefisiensi kemampuan penambatan CO2 oleh setiap sel Chlorella sp. selama 21 hari dibandingkan terhadap inokulasi hari pertama menunjukkan peningkatan yang signifikan dengan nilai efisiensimasing-masing 67,2 %; 144,6 %; 222,6 %; 308,8 %; 364,2 %; 416,1 %; 447,0 %; 470,8 %; 505,9%; 555,0 %; 571,4 %; 581,0 %; 587,7 %; 612,6 %; 626,6 %; 656,6 %; 684,7 %; 715,3 %; 733,9%; dan pada hari ke-21 meningkat sebesar 750,5 %. Dan kemampuan setiap sel dalam menambat CO2 setiap hari mampu meningkatkan sebesar 102 % -167,2 %. Kata Kunci : Chlorella sp., karbondioksida, penambatan, kelimpahan mikroalga


2020 ◽  
Vol 6 (2) ◽  
pp. 34
Author(s):  
Silvia Mena ◽  
Gonzalo Guirado

There is currently quite a lot of scientific interest in carbon dioxide (CO2) capture and valorization with ionic liquids (ILs). In this manuscript, we analyze the influence of the potential applied, the nature of the cathode and the electrolyte using different organic mediators, such as nitro or cyano aromatic derivatives, to promote the electrochemical activation of CO2. An electrocatalytic process using a homogeneous catalysis is seen when nitroderivatives are used, yielding to oxalate in organic electrolytes and ILs. Turnover frequency (TOF) values and Farafay efficiencies were slightly higher in N,N’-dimethylformamide (DMF) than in ILs probably due to the viscosity of the electrolyte. The use of cyano derivatives allows to tune the electrochemical reactivity in function of the reduction potential value applied from electrocarboxylated products (via a nucleophile-electrophile reaction) to oxalate. These electrochemical reactions were also performed using three different cathodes, organic electrolytes and ionic liquids. The use of copper, as a cathode, and ionic liquids, as electrolytes, would be a cheaper and greener alternative for activating carbon dioxide.


2020 ◽  
Vol 9 (1) ◽  
pp. 23-31
Author(s):  
Debabrata Chatterjee ◽  
Rudi van Edik

Reduction of carbon dioxide into formic acid using transition metal complexes as catalysts is a research area of abiding importance. Although ruthenium(II) complexes as ‘molecular catalysts’ have received much attention, use of ruthenium(III) complexes in the selective reduction of carbon dioxide into formic acid has recently been explored. This review focuses on the recent research progress in the use of a ruthenium(III) complex containing the ‘edta’ ligand (edta4- = ethylenediaminetetraacetate) as catalyst or mediator in the catalytic, electro-catalytic and photocatalytic conversion of bicarbonate to formate selectively. Details of the reaction mechanism pertaining to the overall catalytic process are discussed.


Sign in / Sign up

Export Citation Format

Share Document