Maqui (Aristotelia chilensis (Mol.) Stuntz) and murta (Ugni molinae Turcz): Native Chilean sources of polyphenol compounds.

2019 ◽  
Vol 16 (3) ◽  
pp. 261-276 ◽  
Author(s):  
Pamela R. Rivera-Tovar ◽  
María S. Mariotti-Celis ◽  
José Ricardo Pérez-Correa

In recent years, the production, processing and exportation of maqui and murta Chilean berries have increased due to their high Total Polyphenols Content (TPC) and high Antioxidant Capacity (AC). However, the leaves of these berries are agroindustrial discards that present even higher TPC and AC values. Extracts of leaves and berries of maqui and murta with water, methanol and ethanol as solvents showed significant bioactivity, like inhibition of alpha-glucosidase (an enzyme involved in the metabolism of carbohydrates), as well as anti-inflammatory and antidiabetic effects. They are also excellent sources of polyphenols such as oligomers and polymers of delphinidin, pelargonidin, resveratrol, among others that have shown health-promoting bioactivity and good bioavailability. Purified extracts may be useful as supplements for foods and cosmetics, and even as pharmaceutical products. However, it is necessary to control the variability of their TPC, AC and polyphenols profiles caused by genotype, environment, processing, storage and stage of harvesting.

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 25
Author(s):  
José Miguel Bastías-Montes ◽  
Carla Vidal-San-Martín ◽  
Yanara Tamarit-Pino ◽  
Ociel Muñoz-Fariña ◽  
Olga García-Figueroa ◽  
...  

Maqui (Aristotelia chilensis (Mol.) Stuntz) is a Chilean berry rich in antioxidants, which are mostly found in the pulp and skin of the fruit. The objective was to evaluate the cryoconcentration process by centrifugation–filtration as a simultaneous, efficient, and innovative method to increase the content of thermosensitive bioactive compounds of aqueous maqui extract. Cryoconcentration separated the concentrated solute from the aqueous maqui extract with an efficiency of more than 95%; it increased the content of total polyphenols and total anthocyanins and antioxidant capacity by 280%, 573%, and 226%, respectively. Although the concentrates obtained by evaporation at 50, 70, and 80 °C increased the content of bioactive compounds, they did so in a lower percentage than the cryoconcentrate. Furthermore, cyanidin 3,5-diglucoside was degraded at 70 and 80 °C. In conclusion, cryoconcentration by centrifugation–filtration as a simultaneous process efficiently separates the solutes from the frozen matrix of aqueous maqui extract, and it maintains and increases the contents of polyphenols and anthocyanins and antioxidant capacity. This method is recommended for concentrating natural berry extracts with thermosensitive compounds.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 268
Author(s):  
Ana C. Gonçalves ◽  
Ana R. Costa ◽  
José D. Flores-Félix ◽  
Amílcar Falcão ◽  
Gilberto Alves ◽  
...  

Cherries have largely been investigated due to their high content in phenolics in order to fully explore their health-promoting properties. Therefore, this work aimed to assess, for the first time, the anti-inflammatory potential of phenolic-targeted fractions of the Saco cherry, using RAW 264.7 macrophages stimulated with lipopolysaccharide. Additionally, the cytotoxic effects on gastric adenocarcinoma (AGS), neuroblastoma (SH-SY5Y) and normal human dermal fibroblast (NHDF) cells were evaluated, as well as the ability to protect these cellular models against induced oxidative stress. The obtained data revealed that cherry fractions can interfere with cellular nitric oxide (NO) levels by capturing NO radicals and decreasing inducible nitric oxide synthase and cyclooxygenase-2 expression. Furthermore, it was observed that all cherry fractions exhibited dose-dependent cytotoxicity against AGS cells, presenting cytotoxic selectivity for these cancer cells when compared to SH-SY5Y and NHDF cells. Regarding their capacity to protect cancer cells against oxidative injury, in most assays, the total cherry extract was the most effective. Overall, this study reinforces the idea that sweet cherries can be incorporated into new pharmaceutical products, smart foods and nutraceuticals.


Author(s):  
Ana C. Gonçalves ◽  
Ana R. Costa ◽  
José D. Flores-Félix ◽  
Amílcar Falcão ◽  
Gilberto Alves ◽  
...  

Cherries have been largely investigated due to their high content in phenolics in order to fully ex-plore their health-promoting properties. Therefore, this work aimed to assess, for the first time, the anti-inflammatory potential of phenolic-targeted fractions of Saco cherry, using RAW 264.7 mac-rophages stimulated with lipopolysaccharide. Additionally, the cytotoxic effects on gastric ade-nocarcinoma (AGS), neuroblastoma (SH-SY5Y) and normal human dermal fibroblast (NHDF) cells were evaluated, as well as the ability to protect these cellular models against induced oxidative stress. The obtained data revealed that cherry fractions can interfere with cellular nitric oxide (NO) levels by capturing NO radicals and decreasing inducible nitric oxide synthase and cyclooxygen-ase-2 expression. Furthermore, it was observed that all cherry fractions exhibited dose-dependent cytotoxicity against AGS cells, presenting cytotoxic selectivity for these cancer cells when compared to SH-SY5Y and NHDF cells. Regarding their capacity to protect cancer cells against oxidative injury, in most assays, the total cherry extract was the most effective. Overall, this study reinforces the sweet cherries incorporation in new pharmaceutical products, smart foods and nutraceuticals.


Diseases ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 10 ◽  
Author(s):  
Joël Pincemail ◽  
Mouna-Messaouda Kaci ◽  
Claire Kevers ◽  
Jessica Tabart ◽  
Raymond Ebabe Elle ◽  
...  

Polyphenol compounds present in high quantity in wines are well-known to have potent cardio-protective properties through several biological mechanisms including antioxidant activity [1]. A large number of methods have been developed for evaluating the antioxidant capacity of food matrices. Most of them have, however, the disadvantage of being time consuming and require specific analytical protocols and devices. In the present study, we present the electrochemical PAOT (Pouvoir Antioxydant Total)-Liquid® Technology which can be easily used by winemakers for evaluating antioxidant activity of wine during all steps of making process. The methodology is based on the measurement of electric potential variation resulting from chemical reactions between wine polyphenols and a free radical mediator M• as source of oxidants. Total antioxidant activity as estimated by the PAOT-Liquid® activity was 6.8 fold higher in red wines (n = 14) when compared to rosé (n = 3) and white (n = 3) wines bought in a commercial market. Moreover, PAOT-Liquid® activity was highly correlated with total polyphenols content (TPC) of all wines (r = 0.9540, p < 0.0001) and the classical DPPH (2,2-diphenyl-1-picryhydrazyl) assay which is often used for evaluating antioxidant capacity of food matrices (r = 0.9102, p < 0.0001).


2020 ◽  
Vol 16 ◽  
Author(s):  
Armin Mooranian ◽  
Nassim Zamani ◽  
Bozica Kovacevic ◽  
Corina Mihaela Ionescu ◽  
Giuseppe Luna ◽  
...  

Aim: Examine bile acids effects in Type 2 diabetes. Background: In recent studies, the bile acid ursodeoxycholic acid (UDCA) has shown potent anti-inflammatory effects in obese patients while in type 2 diabetics (T2D) levels of the pro-inflammatory bile acid lithocholic acid were increased, and levels of the anti-inflammatory bile acid chenodeoxycholic acid were decreased, in plasma. Objective: Hence, this study aimed to examine applications of novel UDCA nanoparticles in diabetes. Methods: Diabetic balb/c adult mice were divided into three equal groups and gavaged daily with either empty microcapsules, free UDCA, or microencapsulated UDCA over two weeks. Their blood, tissues, urine, and faeces were collected for blood glucose, inflammation, and bile acid analyses. UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Results: UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Conclusion: Bile acids modulated the bile profile without affecting blood glucose levels.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 592 ◽  
Author(s):  
Abraham M. Abraham ◽  
Reem M. Alnemari ◽  
Jana Brüßler ◽  
Cornelia M. Keck

Antioxidants are recommended to prevent and treat oxidative stress diseases. Plants are a balanced source of natural antioxidants, but the poor solubility of plant active molecules in aqueous media can be a problem for the formulation of pharmaceutical products. The potential of PlantCrystal technology is known to improve the extraction efficacy and antioxidant capacity (AOC) of different plants. However, it is not yet proved for plant waste. Black tea (BT) infusion is consumed worldwide and thus a huge amount of waste occurs as a result. Therefore, BT waste was recycled into PlantCrystals using small-scale bead milling. Their characteristics were compared with the bulk-materials and tea infusion, including particle size and antioxidant capacity (AOC) in-vitro. Waste PlantCrystals possessed a size of about 280 nm. Their AOC increased with decreasing size according to the DPPH (1,1-diphenyl-2-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity) assays. The AOC of the waste increased about nine-fold upon nanonization, leading to a significantly higher AOC than the bulk-waste and showed no significant difference to the infusion and the used standard according to DPPH assay. Based on the results, it is confirmed that the PlantCrystal technology represents a natural, cost-effective plant-waste recycling method and presents an alternative source of antioxidant phenolic compounds.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1016
Author(s):  
Stefania De Santis ◽  
Marina Liso ◽  
Giulio Verna ◽  
Francesca Curci ◽  
Gualtiero Milani ◽  
...  

Extra virgin olive oil (EVOO) represents one of the most important health-promoting foods whose antioxidant and anti-inflammatory activities are mainly associated to its polyphenols content. To date, studies exploring the effect of EVOO polyphenols on dendritic cells (DCs), acting as a crosstalk between the innate and the adaptive immune response, are scanty. Therefore, we studied the ability of three EVOO extracts (cv. Coratina, Cima di Mola/Coratina, and Casaliva), characterized by different polyphenols amount, to regulate DCs maturation in resting conditions or after an inflammatory stimulus. Cima di Mola/Coratina and Casaliva extracts were demonstrated to be the most effective in modulating DCs toward an anti-inflammatory profile by reduction of TNF and IL-6 secretion and CD86 expression, along with a down-modulation of Il-1β and iNOS expression. From factorial analysis results, 9 polyphenols were tentatively established to play a synergistic role in modulating DCs inflammatory ability, thus reducing the risk of chronic inflammation.


Antioxidants ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 184 ◽  
Author(s):  
Fatiha Brahmi ◽  
Thomas Nury ◽  
Meryam Debbabi ◽  
Samia Hadj-Ahmed ◽  
Amira Zarrouk ◽  
...  

The present study consisted in evaluating the antioxidant, anti-inflammatory and cytoprotective properties of ethanolic extracts from three mint species (Mentha spicata L. (MS), Mentha pulegium L. (MP) and Mentha rotundifolia (L.) Huds (MR)) with biochemical methods on murine RAW 264.7 macrophages (a transformed macrophage cell line isolated from ascites of BALB/c mice infected by the Abelson leukemia virus). The total phenolic, flavonoid and carotenoid contents were determined with spectrophotometric methods. The antioxidant activities were quantified with the Kit Radicaux Libres (KRLTM), the ferric reducing antioxidant power (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. The MS extract showed the highest total phenolic content, and the highest antioxidant capacity, while the MR extract showed the lowest total phenolic content and the lowest antioxidant capacity. The cytoprotective and anti-inflammatory activities of the extracts were quantified on murine RAW 264.7 macrophages treated with 7-ketocholesterol (7KC; 20 µg/mL: 50 µM) associated or not for 24 h and 48 h with ethanolic mint extracts used at different concentrations (25, 50, 100, 200 and 400 µg/mL). Under treatment with 7KC, an important inhibition of cell growth was revealed with the crystal violet test. This side effect was strongly attenuated in a dose dependent manner with the different ethanolic mint extracts, mainly at 48 h. The most important cytoprotective effect was observed with the MS extract. In addition, the effects of ethanolic mint extracts on cytokine secretion (Interleukin (IL)-6, IL-10, Monocyte Chemoattractant Protein (MCP)-1, Interferon (IFN)-ϒ, Tumor necrosis factor (TNF)-α) were determined at 24 h on lipopolysaccharide (LPS, 0.2 µg/mL)-, 7KC (20 µg/mL)- and (7KC + LPS)-treated RAW 264.7 cells. Complex effects of mint extracts were observed on cytokine secretion. However, comparatively to LPS-treated cells, all the extracts strongly reduce IL-6 secretion and two of them (MP and MR) also decrease MCP-1 and TNF-α secretion. However, no anti-inflammatory effects were observed on 7KC- and (7KC + LPS)-treated cells. Altogether, these data bring new evidences on the potential benefits (especially antioxidant and cytoprotective properties) of Algerian mint on human health.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
María López-Pedrouso ◽  
José M. Lorenzo ◽  
Paula Borrajo ◽  
Daniel Franco

The search for antioxidant peptides as health-promoting agents is of great scientific interest for their biotechnological applications. Thus, the main goal of this study was to identify antioxidant peptides from pork liver using alcalase, bromelain, flavourzyme, and papain enzymes. All liver hydrolysates proved to be of adequate quality regarding the ratio EAA/NEAA, particularly flavourzyme hydrolysates. The peptidomic profiles were significantly different for each enzyme and their characterizations were performed, resulting in forty-four differentially abundant peptides among the four treatments. Porcine liver hydrolysates from alcalase and bromelain are demonstrated to have the most antioxidant capacity. On the other hand, hydrophobic amino acid residues (serine, threonine, histidine and aspartic acid) might be reducing the hydrolysates antioxidant capacity. Seventeen peptides from collagen, albumin, globin domain-containing protein, cytochrome β, fructose-bisphosphate aldolase, dihydropyrimidinase, argininosuccinate synthase, and ATP synthase seem to be antioxidant. Further studies are necessary to isolate these peptides and test them in in vivo experiments.


Sign in / Sign up

Export Citation Format

Share Document