Synthesis of 1,2,3–triazole compounds by click chemistry in aqueous medium and evaluation of bactericidal and antitumoral properties.

2021 ◽  
Vol 17 ◽  
Author(s):  
Lucas Lima Zanin ◽  
David Esteban Quintero Jimenez ◽  
Willian Garcia Birolli ◽  
Tiago Venâncio ◽  
Talita Alvarenga Valdes ◽  
...  

Background: Triazoles are heterocyclic synthetic compounds that have gained relevance after studies by Sharpless on regioselective methodologies for the synthesis of 1,2,3-triazole derivatives. In addition, they have a wide range of biological properties. Objective: The objective of this study is to develop a synthetic methodology aligned with the principles of click chemistry for the synthesis of 1,2,3-triazole derivatives and verify the profile of these compounds in biological assays. Methods: Initially, a model reaction was selected and an optimization study involving synthetic conditions was carried out. Using the most efficient condition, a series of compounds was developed by the reactions between 2-azido-1-phenylethan-1-one derivatives and terminal alkynes. In sequence, bactericidal and antitumoral assays were performed. Results: It was possible to synthesise ten examples using water as a sustainable solvent, in 1 hour, with good yields of 73–99%, including three compounds described for the first time. Two products presented bactericidal activity, one against the gram-negative Escherichia coli ATCC 25922 and other against the gram-positive Paenibacillus alvei CBMAI 2221. Moreover, other two triazole derivatives presented antitumoral activity for prostate and pancreas cancer cells in this screening study with the bioactivity quantified for compound 1-([1,1'-biphenyl]-4-yl)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)ethan-1-one (IC50 = 132 µM). Conclusion: Herein, an efficient methodology for the synthesis of 1,2,3-triazole derivatives with high yields and using water as solvent was developed. Furthermore, some compounds presented positive results to bactericidal and antitumoral assays, justifying further exploration of these novel compounds and their biological properties.

Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 776
Author(s):  
Lahoucine Bahsis ◽  
Meryem Hrimla ◽  
Hicham Ben El Ayouchia ◽  
Hafid Anane ◽  
Miguel Julve ◽  
...  

The reaction of copper(II) acetate with the 2-aminobenzothiazole (abt) heterocycle affords the new copper(II) complex of formula [Cu(abt)2(OOCCH3)2] (1) in a straightforward manner. Compound 1 served as a precatalyst for azide/alkyne cycloaddition reactions (CuAAC) in water, leading to 1,4-disubstituted-1,2,3-triazole derivatives in a regioselective manner and with excellent yields at room temperature. The main advantages of the coordination of such a heterocyclic ligand in 1 are its strong σ-donating ability (N-Cu), nontoxicity and biological properties. In addition, the click chemistry reaction conditions using 1 allow the formation of a great variety of 1,2,3-triazole-based heterocyclic compounds that make this protocol potentially relevant from biological and sustainable viewpoints. A molecular electron density theory (MEDT) study was performed by using density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) (LANL2DZ for Cu) level to understand the observed regioselectivity in the CuAAC reaction. The intramolecular nature of this reaction accounts for the regioselective formation of the 1,4-regioisomeric triazole derivatives. The ionic nature of the starting copper-acetylide precludes any type of covalent interaction throughout the reaction, as supported by the electron localization function (ELF) topological analysis, reaffirming the zwitterionic-type (zw-type) mechanism of the copper(I)/aminobenzothiazole-catalysed azide-alkyne cycloaddition reactions.


2020 ◽  
Author(s):  
Aleksandra Balliu ◽  
Aaltje Roelofje Femmigje Strijker ◽  
Michael Oschmann ◽  
Monireh Pourghasemi Lati ◽  
Oscar Verho

<p>In this preprint, we present our initial results concerning a stereospecific Pd-catalyzed protocol for the C3 alkenylation and alkynylation of a proline derivative carrying the well utilized 8‑aminoquinoline directing group. Efficient C–H alkenylation was achieved with a wide range of vinyl iodides bearing different aliphatic, aromatic and heteroaromatic substituents, to furnish the corresponding C3 alkenylated products in good to high yields. In addition, we were able show that this protocol can also be used to install an alkynyl group into the pyrrolidine scaffold, when a TIPS-protected alkynyl bromide was used as the reaction partner. Furthermore, two different methods for the removal of the 8-aminoquinoline auxiliary are reported, which can enable access to both <i>cis</i>- and <i>trans</i>-configured carboxylic acid building blocks from the C–H alkenylation products.</p>


2019 ◽  
Author(s):  
Andrew Romine ◽  
Kin Yang ◽  
Malkanthi Karunananda ◽  
Jason Chen ◽  
Keary Engle

A weakly coordinating monodentate heteroaryl thioether directing group has been developed for use in Pd(II) catalysis to orchestrate key elementary steps in the catalytic cycle that require conformational flexibility in a manner that is difficult to accomplish with traditional strongly coordinating directing groups. This benzothiazole thioether, (BT)S, directing group can be used to promote oxidative Heck reactivity of internal alkenes providing a wide range of products in moderate to high yields. To demonstrate the broad applicability of this directing group, arene C–H olefination was also successfully developed. Reaction progress kinetic analysis provides insights into the role of the directing group in each reaction, which is supplemented with computational data for the oxidative Heck reaction. Furthermore, this (BT)S directing group can be transformed into a number of synthetically useful functional groups, including a sulfone for Julia olefination, allowing it to serve as a “masked olefin” directing group in synthetic planning. In order to demonstrate this synthetic utility, natural products (+)-salvianolic acid A and salvianolic acid F are formally synthesized using the (BT)S directed C–H olefination as the key step.


2019 ◽  
Vol 26 (23) ◽  
pp. 4403-4434 ◽  
Author(s):  
Susimaire Pedersoli Mantoani ◽  
Peterson de Andrade ◽  
Talita Perez Cantuaria Chierrito ◽  
Andreza Silva Figueredo ◽  
Ivone Carvalho

Neglected Diseases (NDs) affect million of people, especially the poorest population around the world. Several efforts to an effective treatment have proved insufficient at the moment. In this context, triazole derivatives have shown great relevance in medicinal chemistry due to a wide range of biological activities. This review aims to describe some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis and Leishmaniasis.


2019 ◽  
Vol 16 (7) ◽  
pp. 953-967 ◽  
Author(s):  
Ghodsi M. Ziarani ◽  
Fatemeh Mohajer ◽  
Razieh Moradi ◽  
Parisa Mofatehnia

Background: As a matter of fact, nitrogen as a hetero atom among other atoms has had an important role in active biological compounds. Since heterocyclic molecules with nitrogen are highly demanded due to biological properties, 4-phenylurazole as a compound containing nitrogen might be important in the multicomponent reaction used in agrochemicals, and pharmaceuticals. Considering the case of fused derivatives “pyrazolourazoles” which are highly applicable because of their application for analgesic, antibacterial, anti-inflammatory and antidiabetic activities as HSP-72 induction inhibitors (I and III) and novel microtubule assembly inhibitors. It should be mentioned that spiro-pyrazole also has biological activities like cytotoxic, antimicrobial, anticonvulsant, antifungal, anticancer, anti-inflammatory, and cardiotonic activities. Objective: Urazole has been used in many heterocyclic compounds which are valuable in organic syntheses. This review disclosed the advances in the use of urazole as the starting material in the synthesis of various biologically active molecules from 2006 to 2019. Conclusion: Compounds of urazole (1,2,4-triazolidine-3,5-dione) are the most important molecules which are highly active from the biological perspective in the pharmaceuticals as well as polymers. In summary, many protocols for preparations of the urazole derivatives from various substrates in multi-component reactions have been reported from different aromatic and aliphatic groups which have had carbonyl groups in their structures. It is noted that several catalysts have been synthesized to afford applicable molecules with urazole scaffolds. In some papers, being environmentally friendly, short time reactions and high yields are highlighted in the protocols. There is a room to synthesize new catalysts and perform new reactions by manipulating urazole to produce biologically active compounds, even producing chiral urazole component as many groups of chiral urazole compounds are important from biological perspective.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3579
Author(s):  
Svetlana A. Popova ◽  
Evgenia V. Pavlova ◽  
Oksana G. Shevchenko ◽  
Irina Yu. Chukicheva ◽  
Aleksandr V. Kutchin

The pyrazoline ring is defined as a “privileged structure” in medicinal chemistry. A variety of pharmacological properties of pyrazolines is associated with the nature and position of various substituents, which is especially evident in diarylpyrazolines. Compounds with a chalcone fragment show a wide range of biological properties as well as high reactivity which is primarily due to the presence of an α, β-unsaturated carbonyl system. At the same time, bicyclic monoterpenoids deserve special attention as a source of a key structural block or as one of the pharmacophore components of biologically active molecules. A series of new diarylpyrazoline derivatives based on isobornylchalcones with different substitutes (MeO, Hal, NO2, N(Me)2) was synthesized. Antioxidant properties of the obtained compounds were comparatively evaluated using in vitro model Fe2+/ascorbate-initiated lipid peroxidation in the substrate containing brain lipids of laboratory mice. It was demonstrated that the combination of the electron-donating group in the para-position of ring B and OH-group in the ring A in the structure of chalcone fragment provides significant antioxidant activity of synthesized diarylpyrazoline derivatives.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Blazej Slazak ◽  
Klara Kaltenböck ◽  
Karin Steffen ◽  
Martyna Rogala ◽  
Priscila Rodríguez-Rodríguez ◽  
...  

AbstractCyclotides are cyclic peptides produced by plants. Due to their insecticidal properties, they are thought to be involved in host defense. Violets produce complex mixtures of cyclotides, that are characteristic for each species and variable in different environments. Herein, we utilized mass spectrometry (LC–MS, MALDI-MS), transcriptomics and biological assays to investigate the diversity, differences in cyclotide expression based on species and different environment, and antimicrobial activity of cyclotides found in violets from the Canary Islands. A wide range of different habitats can be found on these islands, from subtropical forests to dry volcano peaks at high altitudes. The islands are inhabited by the endemic Viola palmensis, V. cheiranthifolia, V. anagae and the common V. odorata. The number of cyclotides produced by a given species varied in plants from different environments. The highest diversity was noted in V. anagae which resides in subtropical forest and the lowest in V. cheiranthifolia from the Teide volcano. Transcriptome sequencing and LC–MS were used to identify 23 cyclotide sequences from V. anagae. Cyclotide extracts exhibited antifungal activities with the lowest minimal inhibitory concentrations noted for V. anagae (15.62 μg/ml against Fusarium culmorum). The analysis of the relative abundance of 30 selected cyclotides revealed patterns characteristic to both species and populations, which can be the result of genetic variability or environmental conditions in different habitats. The current study exemplifies how plants tailor their host defense peptides for various habitats, and the usefulness of cyclotides as markers for chemosystematics.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Kieran Joyce ◽  
Georgina Targa Fabra ◽  
Yagmur Bozkurt ◽  
Abhay Pandit

AbstractBiomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.


2021 ◽  
Vol 9 (5) ◽  
pp. 890
Author(s):  
Pietro Tedesco ◽  
Fortunato Palma Esposito ◽  
Antonio Masino ◽  
Giovanni Andrea Vitale ◽  
Emiliana Tortorella ◽  
...  

Extremophilic microorganisms represent a unique source of novel natural products. Among them, cold adapted bacteria and particularly alpine microorganisms are still underexplored. Here, we describe the isolation and characterization of a novel Gram-positive, aerobic rod-shaped alpine bacterium (KRL4), isolated from sediments from the Karuola glacier in Tibet, China. Complete phenotypic analysis was performed revealing the great adaptability of the strain to a wide range of temperatures (5–40 °C), pHs (5.5–8.5), and salinities (0–15% w/v NaCl). Genome sequencing identified KRL4 as a member of the placeholder genus Exiguobacterium_A and annotation revealed that only half of the protein-encoding genes (1522 of 3079) could be assigned a putative function. An analysis of the secondary metabolite clusters revealed the presence of two uncharacterized phytoene synthase containing pathways and a novel siderophore pathway. Biological assays confirmed that the strain produces molecules with antioxidant and siderophore activities. Furthermore, intracellular extracts showed nematocidal activity towards C. elegans, suggesting that strain KRL4 is a source of anthelmintic compounds.


2021 ◽  
Author(s):  
Qiu-Hong Huang ◽  
Qian-Yi Zhou ◽  
Chen Yang ◽  
Li Chen ◽  
Jin-Pei Cheng ◽  
...  

A highly efficient desymmetrizing asymmetric bromination of bisphenol phosphine oxides was developed, providing a wide range of chiral bisphenol phosphine oxides and bisphenol phosphinates with high yields and enantioselectivities.


Sign in / Sign up

Export Citation Format

Share Document