Review on Polymeric Citrate Precursor and Sono-chemical Methods for the Synthesis of Nanomaterials

2020 ◽  
Vol 16 (7) ◽  
pp. 826-832
Author(s):  
Irfan H. Lone ◽  
Jeenat Aslam ◽  
Nagi R.E. Radwan ◽  
Arifa Akhter ◽  
Ali H. Bashal ◽  
...  

Background: he properties of materials depend on the way of construction and the arrangement of atoms and molecules. Therefore, it is very important to know synthesis methods for the preparation of novel materials as per their desired structure. The low-temperature synthesis methods, such as polymeric citrate precursor and sonochemical methods are efficient enough to control the preparation of novel nanoparticles with morphological differences that leads to the novel devices with desired technological performances. These methods are simple, very less expensive and are easy to handle to operate for the synthesis of nanoparticles as per the expected morphology and dimensions. Methods: Polymeric citrate precursor method, a chelate-based method involves the reaction between mixed cations with citric acid, and then these cations are cross-linked with the help of ethylene glycol for the esterification process. Gel composites were heated which burns the organic moieties leaving behind the nanoparticles, and burning gels becomes essential for the reduction of nanoparticles. The sonochemical method, on the other hand, uses ultrasonic the irradiation results. The acoustic cavitation and high intensity ultrasound has been exploited for the preparation of different series of nanoparticles. Results: Commonly known for polymeric citrate method as Pechini gel pyrolysis method gives the evidence of versatile and elegant method for the synthesis of nanoparticles. The sonochemical method provides an unusual route of nanoparticle fabrication without bulk and that too with low temperature and pressure or less reaction time. These two methods have better control for the desired shape morphology and size and provide many opportunities for the use of these prepared nanoparticles in various aspects of science and technology. Conclusion: Polymeric citrate precursor and sonochemical methods are efficient to reduce to promote desirable reaction conditions and reduce the metal ions for the fabrication of nanoparticles. The prepared nanoparticles by using such low-cost elegant methods are uniform with a small size distribution, reproducible with good yield as per the demanded applications.

2020 ◽  
Vol 44 (45) ◽  
pp. 19868-19879
Author(s):  
Sleshi Fentie Tadesse ◽  
Dong-Hau Kuo ◽  
Worku Lakew Kebede ◽  
Lalisa Wakjira Duresa

We developed simple and low cost synthesis methods at low temperature to synthesize V-doped Mo(O,S)2 for the photocatalytic degradation of dyes.


Author(s):  
Vishnu D. Rajput ◽  
Tatiana Minkina ◽  
Richard Kimber ◽  
Vipin Kumar Singh ◽  
Sudhir Shende ◽  
...  

The exploitation of microorganisms for the fabrication of nanoparticles (NPs) has garnered considerable research interest globally. The microbiological transformation of metals and metal salts into respective NPs can be achieved under environmentally benign conditions, offering a more sustainable alternative to chemical synthesis methods. Species of the metal-reducing bacterial genus Shewanella are able to couple the oxidation of various electron donors including lactate, pyruvate and hydrogen, to the reduction of a wide range of metal species, resulting in biomineralization of a multitude of metal NPs. Single metal-based NPs as well as composite materials with properties equivalent or even superior to physically and chemically produced NPs have been synthesized by a number of Shewanella species. A mechanistic understanding of electron transfer mediated bioreduction of metals into respective NPs by Shewanella is crucial in maximizing NP yields and directing the synthesis to produce fine-tuned NPs with tailored properties. In addition, thorough investigations into the influence of process parameters controlling the biosynthesis is another focal point for optimizing the process of NP generation. Synthesis of metal-based NPs using Shewanella species offers a low-cost, eco-friendly alternative to current physiochemical methods. This article aims to shed light on the contribution of Shewanella as a model organism in the biosynthesis of a variety of NPs, and critically reviews the current state of knowledge on factors controlling their synthesis, characterization, potential applications in different sectors and future prospects.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 28
Author(s):  
Anastasios I. Tsiotsias ◽  
Nikolaos D. Charisiou ◽  
Ioannis V. Yentekakis ◽  
Maria A. Goula

CO2 methanation has recently emerged as a process that targets the reduction in anthropogenic CO2 emissions, via the conversion of CO2 captured from point and mobile sources, as well as H2 produced from renewables into CH4. Ni, among the early transition metals, as well as Ru and Rh, among the noble metals, have been known to be among the most active methanation catalysts, with Ni being favoured due to its low cost and high natural abundance. However, insufficient low-temperature activity, low dispersion and reducibility, as well as nanoparticle sintering are some of the main drawbacks when using Ni-based catalysts. Such problems can be partly overcome via the introduction of a second transition metal (e.g., Fe, Co) or a noble metal (e.g., Ru, Rh, Pt, Pd and Re) in Ni-based catalysts. Through Ni-M alloy formation, or the intricate synergy between two adjacent metallic phases, new high-performing and low-cost methanation catalysts can be obtained. This review summarizes and critically discusses recent progress made in the field of bimetallic Ni-M (M = Fe, Co, Cu, Ru, Rh, Pt, Pd, Re)-based catalyst development for the CO2 methanation reaction.


Rare Metals ◽  
2021 ◽  
Author(s):  
Jia-Xing Song ◽  
Xin-Xing Yin ◽  
Zai-Fang Li ◽  
Yao-Wen Li

Abstract As a promising photovoltaic technology, perovskite solar cells (pero-SCs) have developed rapidly over the past few years and the highest power conversion efficiency is beyond 25%. Nowadays, the planar structure is universally popular in pero-SCs due to the simple processing technology and low-temperature preparation. Electron transport layer (ETL) is verified to play a vital role in the device performance of planar pero-SCs. Particularly, the metal oxide (MO) ETL with low-cost, superb versatility, and excellent optoelectronic properties has been widely studied. This review mainly focuses on recent developments in the use of low-temperature-processed MO ETLs for planar pero-SCs. The optical and electronic properties of widely used MO materials of TiO2, ZnO, and SnO2, as well as the optimizations of these MO ETLs are briefly introduced. The commonly used methods for depositing MO ETLs are also discussed. Then, the applications of different MO ETLs on pero-SCs are reviewed. Finally, the challenge and future research of MO-based ETLs toward practical application of efficient planar pero-SCs are proposed. Graphical abstract


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 252
Author(s):  
Henni Setia Ningsih ◽  
Leonhard Tannesia ◽  
Hsiang-Ho Chen ◽  
Shao-Ju Shih

Mesoporous beta tricalcium phosphate (β-TCP) has recently attracted significant interest as an artificial bone tissue in orthopedics. However, a scalable process is required to meet future demands. Spray drying is one of the potential synthesis methods owing to its low cost and scalable production. In this study, various mesoporous β-TCP powders were calcined in the range of 800 to 1100 °C, with particle sizes ranging from ~0.3 to ~1.8 μm, specific surface areas from ~16 to ~64 m2/g, and average pore sizes of 3 nm. Except for the 800 °C calcined powder, the other β-TCP powders (calcination temperatures of 900, 1000, and 1100 °C) exhibited no cytotoxicity. These results indicate that spray-dried mesoporous β-TCP powders were obtained. Finally, the corresponding formation mechanisms are discussed.


2021 ◽  
Author(s):  
Mingming Su ◽  
Yajing Hu ◽  
Ao Yu ◽  
Zhiyao Peng ◽  
Wangtao Long ◽  
...  

Broadband photodetectors fabricated with organic molecules have the advantages of low cost, high flexibility, easy processing and low-temperature requirement. Fullerene molecules, due to the electron acceptor and photoinduced electron transfer...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dian Gong ◽  
Gaofeng Zeng

AbstractTransition metal oxides are the potential catalysts to replace noble-metal based catalyst for the catalytic combustion of methane due to the tolerable reactivity and low cost. However, these catalysts are challenged by the low temperature reactivity. Herein, the surface defective Co3O4 nanoplates are realized through a facile co-precipitation and thermal reduction method with the association of GO. The resultant catalysts (CoGO50) demonstrate a superior low-temperature reactivity for the methane oxidation to CO2 and H2O in comparison with the common Co3O4 catalyst. The reliable stability of CoGO50 catalyst was proved by 80 h testing with intermittent feeding of water vapor. The experimental analysis demonstrates that the presence of a small amount of GO significantly affects the catalysts in surface valence state, active oxygen species and surface oxygen vacancies through reacting with the cobalt oxide as a reductant. Moreover, GO plays as 2D confine template to form smaller and thinner nanoplates. This work provides a facile method to control the surface properties of catalyst not only for Co3O4 based catalysts but also for wider solid catalysts.


2021 ◽  
Vol 68 ◽  
pp. 35-51
Author(s):  
Sumaira Mumtaz ◽  
Raziya Nadeem ◽  
Raja Adil Sarfraz ◽  
Muhammad Shahid

Synthesis of nanoparticles of transition metals by using medicinal plants has been outstreched in recent years because of the characteristic features which are embodied in the end product. This work is proceded with the aim to synthesize and optimize copper nanoparticles (CuNPs-Pl) using aqueous extract of Polyalthia longifolia leaves (PlL) for characterization and evaluation of antimicrobial and antioxidant potential. The synthesis of CuNPs-Pl was confirmed by visual inspection of the dark brown residues in the reaction flask and via absorption band around 580nm by UV/Visible spectroscopy. Synthesis process was optimized through investigation of environmental variables. FTIR analysis was carried out for both PIL and CuNPs-Pl which identified the presence of alkanes, alcoholic, and aldehydic groups in the PlL and their encapsulation on the copper surface. The synthesized CuNPs-Pl were found to be spherical and rod shaped, and polydispersed when investigated through SEM study. Similarly, these nanoparticles had monoclinic structure and crystalline nature when analyzed by XRD. Moreover, these nanoparticles showed metallic form when EDX examination was done. Further, biological activities were performed. The synthesized nanoparticles showed considerable inhibition zones against Escherichia coli (12mm), Bacillus subtilis (11mm), Aspergillus niger (10mm), and Schyzophyllum commune (16mm) which depicted their powerful antibacterial and antifungal activity. Likewise, CuNPs-Pl were effeciently able to quench free radicals as indicated from the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), and nitric oxide (NO) assays by exhibiting 86.32, 50.45, and 48.23% inhibition respectively. Thus, the contemporary work has substantiated that low cost CuNPs-Pl can be highly proficient alternate or substitute of synthetic formulations.


Sign in / Sign up

Export Citation Format

Share Document