Determination of Optimum Separation Condition for Some Carbapenem Antibiotics Using RPLC with the Aid of Central Composite Design and Desirability Function

2017 ◽  
Vol 13 (2) ◽  
pp. 100-109 ◽  
Author(s):  
Busra Gundogan ◽  
Ebru Demiralay ◽  
Yasar Daldal ◽  
Zehra Ustun
BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3255-3271
Author(s):  
Nor Hafiza Sayuti ◽  
Ammar Akram Kamarudin ◽  
Norazalina Saad ◽  
Nor Asma Ab. Razak ◽  
Norhaizan Mohd Esa

Response surface methodology (RSM) was employed to optimize the extraction conditions of phenolic and antioxidant compounds from matcha green tea (Camellia sinensis) using central composite design (CCD). The desirability function was used to find the optimum extraction conditions. The highest polyphenol and antioxidant content yield were reached at a temperature of 80 °C, an extraction time of 20 min, a liquid-to-solid ratio of 100 mL/g, and a desirability value of 0.948. The experimental values for total phenolics under the optimum extraction conditions were 317.62 ± 3.45 mg GAE/g and 29.21 ± 0.38 mg RE/g for the total flavonoids. The antioxidant activity (AA) was evaluated using 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), which showed radical scavenging activities at 88.28 ± 0.14% and 90.02 ± 0.14%, respectively. The high performance liquid chromatography (HPLC) analysis at the optimum condition revealed 14 compounds. Among the analyzed compounds, matcha green tea extract (MGTE) had the highest content of epigallocatechin gallate (EGCG) with 95.48 mg/g, followed by epicatechin gallate (ECG) at 74.48 mg/g, and catechin at 28.94 mg/g. The results suggested that the optimized parameters of heat-assisted extraction provide an ideal green extraction method for the extraction of the high polyphenol and antioxidant content in matcha green tea.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 160 ◽  
Author(s):  
Dennis Asante-Sackey ◽  
Sudesh Rathilal ◽  
Lingham V. Pillay ◽  
Emmanuel Kweinor Tetteh

An ion exchange dialysis (IED) is used in the recovery of aluminium from residue. In this paper, the face-centred central composite design (FC-CCD) of the response surface methodology (RSM) and desirability approach is used for experimental design, modelling and process optimization of a counter flow IED system. The feed concentration, feed flowrate, sweep flowrate and sweep concentration were selected as the process variables, with the Al transport across a Nafion 117 membrane as the target response. A total of 30 experimental runs were conducted with six centre points. The response obtained was analysed by analysis of variance (ANOVA) and fitted to a second-order polynomial model using multiple regression analysis. The actual R2 and standard deviation of the model are 0.9548 and 0.2932, respectively. Depending on the time zone of reference (24 h or 32 h), the highest enrichment of >1.50 was achieved. The designed variables were numerically optimized by applying the desirability function to achieve the maximum Al transport. The optimised condition values were found to be a feed concentration of 1600 ppm, feed flowrate of 61.76%, sweep flowrate of 37.50% and sweep concentration of 0.75 N for the 80% target response at 32 h. Overall, the model can be used to effectively predict Al recovery using the designed system.


2018 ◽  
Vol 17 (2) ◽  
pp. 245-255 ◽  
Author(s):  
S. A. R. Shahamirifard ◽  
M. Ghaedi ◽  
M. Montazerozohori ◽  
A. Masoudiasl

In this work, the use of carbon dots (CDs) as a complexing agent and sensitizer in a polymeric matrix for determination of copper(ii) by UV-vis spectroscopy is reported for the first time.


2021 ◽  
Author(s):  
Siva Krishna Muchakayala ◽  
Kommera Pavithra ◽  
Naresh Kumar Katari ◽  
Vishnu Murthy Marisetti ◽  
THIRUPATHI DONGALA ◽  
...  

Current study portrays a specific, accurate, simple and rapid UPLC method development for the determination of impurities present in two different topical formulations (Cream and Ointment) of betamethasone dipropionate. The...


Sign in / Sign up

Export Citation Format

Share Document