Nanofocusing Devices Development and Nano-Medicine

2005 ◽  
Vol 1 (3) ◽  
pp. 211-224 ◽  
Author(s):  
Ivan Nikolov
Keyword(s):  
Immuno ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 30-66
Author(s):  
Niraj Kumar Jha ◽  
Madhan Jeyaraman ◽  
Mahesh Rachamalla ◽  
Shreesh Ojha ◽  
Kamal Dua ◽  
...  

An outbreak of “Pneumonia of Unknown Etiology” occurred in Wuhan, China, in late December 2019. Later, the agent factor was identified and coined as SARS-CoV-2, and the disease was named coronavirus disease 2019 (COVID-19). In a shorter period, this newly emergent infection brought the world to a standstill. On 11 March 2020, the WHO declared COVID-19 as a pandemic. Researchers across the globe have joined their hands to investigate SARS-CoV-2 in terms of pathogenicity, transmissibility, and deduce therapeutics to subjugate this infection. The researchers and scholars practicing different arts of medicine are on an extensive quest to come up with safer ways to curb the pathological implications of this viral infection. A huge number of clinical trials are underway from the branch of allopathy and naturopathy. Besides, a paradigm shift on cellular therapy and nano-medicine protocols has to be optimized for better clinical and functional outcomes of COVID-19-affected individuals. This article unveils a comprehensive review of the pathogenesis mode of spread, and various treatment modalities to combat COVID-19 disease.


Marine Drugs ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 356 ◽  
Author(s):  
Hanaa Ali Hussein ◽  
Mohd Azmuddin Abdullah

Cancer is the main cause of death worldwide, so the discovery of new and effective therapeutic agents must be urgently addressed. Diatoms are rich in minerals and secondary metabolites such as saturated and unsaturated fatty acids, esters, acyl lipids, sterols, proteins, and flavonoids. These bioactive compounds have been reported as potent anti-cancer, anti-oxidant and anti-bacterial agents. Diatoms are unicellular photosynthetic organisms, which are important in the biogeochemical circulation of silica, nitrogen, and carbon, attributable to their short growth-cycle and high yield. The biosilica of diatoms is potentially effective as a carrier for targeted drug delivery in cancer therapy due to its high surface area, nano-porosity, bio-compatibility, and bio-degradability. In vivo studies have shown no significant symptoms of tissue damage in animal models, suggesting the suitability of a diatoms-based system as a safe nanocarrier in nano-medicine applications. This review presents an overview of diatoms’ microalgae possessing anti-cancer activities and the potential role of the diatoms and biosilica in the delivery of anticancer drugs. Diatoms-based antibodies and vitamin B12 as drug carriers are also elaborated.


2018 ◽  
Vol 6 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Muthupandian Saravanan ◽  
Tsehaye Asmalash ◽  
Atsebaha Gebrekidan ◽  
Dawit Gebreegziabiher ◽  
Tadele Araya ◽  
...  

2013 ◽  
Vol 1617 ◽  
pp. 145-150
Author(s):  
Tetyana V. Torchynska ◽  
Yuri V. Vorobiev ◽  
Paul P. Horley

ABSTRACTBio-conjugated CdSe/ZnS core/shell quantum dots (QDs) attract essential scientific interest due to their possible nano-medicine applications, including selective highlighting of affected tissues and targeted drug delivery to the certain type of cells. The paper is focused on the theoretical description of the blue shift observed in the luminescence spectra of CdSe/ZnS QDs upon their bio-conjugation with the anti-interleukin-10 antibodies. We propose a model that describes the ground state of the exciton confined in a quantum dot and explaining the bio-conjugation phenomenon by the change of the effective confinement volume.


2012 ◽  
Vol 134 (06) ◽  
pp. 36-41
Author(s):  
Guy M. Genin ◽  
Ram V. Devireddy

This article reviews the use of mechanical engineering techniques in the field of nano-engineered medicines. Nano-engineered solutions now exist for a range of medical diagnostics, therapeutics, and imaging, and are at the core of many of the current generation of regenerative medicine and tissue engineering strategies. Nanoparticles can be developed to absorb energy with high efficiency from photons of certain frequency ranges. The ability to understand specific diseases such as osteogenesis imperfecta based upon such fundamental analyses has been demonstrated by ASME member Sandra Shefelbine of Imperial College London in collaboration with the Buehler group. The tools of nanotechnology have enabled mechanical engineers to engineer the beginnings of an entirely new generation of cures and therapies, and this article has discussed just a sample. In order to serve as a forum for discussion of these advances ASME is recommissioning the Journal of Nanotechnology in Engineering and Medicine.


Author(s):  
Muthukrishnan Lakshmipathy ◽  
Anima Nanda

The tremendous success in developing new nanomaterials and fostering technological innovation arises from the focus on interdisciplinary research and collaboration between physical and medical scientists. The concept of nano-medicine is one of the most important and exciting ideas ever generated by the applications of nanoscience. One of the most challenging tasks in the pharmaceutical industry is the formulation of poorly soluble drugs. The implication of conventional techniques for improving the solubility has gained limited success. Nanoparticles facilitate formulation with improved solubility and efficacy mainly through nanosuspension approach. Techniques such as media milling, high-pressure homogenization, and use of microemulsion have been used for production of nanosuspensions for a novel delivery system. Moreover, they are manoeuvred to patient-acceptable dosage forms like tablets, capsules, and lyophilized powder products. Nanosuspension technology has also been studied for active and passive targeted drug delivery systems, which the chapter highlights on various formulational perspectives and applications as a biomedicine delivery system.


Nanoscale ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 6164-6175 ◽  
Author(s):  
Elena Navarro-Palomares ◽  
Paula González-Saiz ◽  
Carlos Renero-Lecuna ◽  
Rosa Martín-Rodríguez ◽  
Fernando Aguado ◽  
...  

Core–shell nanoparticles provide two fold functionality in nano medicine: reduction of nanotoxicity and improving as a tool for imaging and therapy.


Sign in / Sign up

Export Citation Format

Share Document