2-Pyrazolines as Biologically Active and Fluorescent Agents, An Overview

2019 ◽  
Vol 18 (10) ◽  
pp. 1366-1385 ◽  
Author(s):  
Pramod Singh ◽  
Jitendra Singh ◽  
Geeta J. Pant ◽  
Mohan S.M. Rawat

Nitrogen-containing five-membered heterocyclics play a vital role in pharmaceuticals as well as medicinal chemistry. Pyrazolines play a significant role among other heterocycles because of their therapeutic and pharmacological properties. 2-Pyrazolines displayed a wide variety of biological activities such as anticancer, antiepileptic, anti-aids, antimalarial, insecticidal, antitubercular, etc. and they are used as pesticides, herbicides, fungicides and also used in agrochemical research and analytical chemistry. 2-Pyrazolines are well-known brightening agents used in chemosensor. They have excellent fluorescent properties and are widely used in synthetic fibers, dyes, photography and hole transporting materials. A number of preparation methods of pyrazolines have also been investigated by several research groups. In this review, most of the synthesized and reported nitrogen-containing five-membered heterocycles including 2-pyrazolines, their pharmaceutical evaluation and structure-reactivity are discussed.

Author(s):  
Harish Rajak ◽  
Murli Dhar Kharya ◽  
Pradeep Mishra

There are vast numbers of pharmacologically active heterocyclic compounds in regular clinical use. The presence of heterocyclic structures in diverse types of compounds is strongly indicative of the profound effects such structure exerts on physiologic activity, and recognition of this is abundantly reflected in efforts to find useful synthetic drugs. The 1,3,4-oxadiazole nucleus has emerged as one of the potential pharmacophore responsible for diverse pharmacological properties. Medical Literature is flooded with reports of a variety of biological activities of 2,5-Disubstituted-1,3,4-oxadiazoles. The present work is an attempt to summarize and enlist the various reports published on biologically active 2,5-disubstituted-1,3,4-oxadiazoles.


2020 ◽  
Vol 06 ◽  
Author(s):  
Surya Kant Tripathi ◽  
Sunayna Behera ◽  
Munmun Panda ◽  
Gokhan Zengin ◽  
Bijesh K. Biswal

Background: Lagerstroemia speciosa (L.) Pers is one of the most valuable plants due to its ornamental and pharmacological relevance. It is known for its anti-diabetic activity with proved potent blood sugar-lowering activity. The anti-diabetic activity is due to presence of its biologically active component corosolic acid. Moreover, L. speciosa and its novel purified compounds are also well-known for its several biological activities with beneficial health benefit on the human being. Objectives: This review provides a summary of pharmacokinetics, toxicity, and pharmacological properties of L. speciosa and its purified phytochemicals which may help researchers for building up new researches in near future. Methods: The current article is prepared by collecting through various online and offline databases. Preliminary source of study and data collection for outlining the review was research articles and reviews that have been already published by many reputed publishers, including Springer, Elsevier, Taylor & Francis imprints, BMC, Willy, The Norwegian Academy of Science and Letters, Environmental health prospective (EHP), and PLOS One. Result: The available studies results suggested that the L. speciosa and its phytochemicals showed antidiabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiviral, anti-obesity, and cardio-protective activities. Pharmacokinetic stud-ies suggested the low bioavailability of its purified compounds. However, nano-encapsulation can improve the bioavaila-bility related issue and effectively potentiate the medicinal properties of its constituents. Conclusion: Considering the worthy pharmacological properties, L. speciosa is considered as a potent source of several novel drugs. Though, still preclinical and clinical studies are needed to reveal the targets, molecular mechanisms, bioavail-ability, and toxicity of its constituents.


2020 ◽  
Vol 17 (7) ◽  
pp. 780-794
Author(s):  
Nurhayatun S. Abdul Razak ◽  
Joazaizulfazli Jamalis ◽  
Subhash Chander ◽  
Roswanira Abdul Wahab ◽  
Deepak P. Bhagwat ◽  
...  

Coumarin and oxadiazole moieties ubiquitously occur in a wide range of natural products and are valued for their varied and beneficial pharmacological activities. Herein, this review focuses on various documented techniques used by researchers to synthesize an assortment of biologically active coumarin-oxadiazole scaffolds. Also, the common techniques discussed are used to establish the wide-range of biological activities of the synthesized coumarin and oxadiozole derivatives, including; antioxidant, anthelmintic, antimicrobial, anti-tuberculosis, analgesic, anti-inflammatory, cytotoxicity and anticonvulsant. Additionally, the current, well-established drugs synthesized using coumarin-oxadiazole scaffolds are typically dispensed in regular clinical practice are also highlighted in this review paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Jayaraj Paulraj ◽  
Raghavan Govindarajan ◽  
Pushpangadan Palpu

Spilanthesspp. are popular, over-the-counter remedies; they are sold over the internet under various names and are widely used in traditional medicine in various cultures. This review will summarize the important reports on the ethnopharmacology, botany, phytochemistry, and pharmacological properties as described in the literature from recent years (1920 to 2013).Spilanthesspp. are used for more than 60 types of disorders. They are reported to contain a number of biologically active phytochemicals, although a large number of ethnopharmacological uses have been documented; only a few of these species have been investigated for their chemical and biological activities. The studies are carried out mainly onSpilanthesextracts and a few metabolites substantiate the uses of these plants in traditional medicine. Well-conducted pharmacological studies are still needed for several traditional indications, and the mechanisms of action by which the plant extracts and the active compounds exert their pharmacological effects remain to be studied. They are predominantly used as extracts in personal care products, traditional medicines, and the pharmaceutical and culinary areas. Suggestions are made regarding some of the possible mechanisms of action as to how the known compounds may exert their biological activity.


2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


Author(s):  
A. V. Kadomtsevа ◽  
I. V. Zhdanovich ◽  
M. S. Piskunovа ◽  
A. N. Lineva ◽  
A. N. Novikova ◽  
...  

The synthesis of biologically active coordination compounds and the design on their basis of effective pharmacological preparations is currently the promising area. This paper presents the results of the toxicological studies on digermanium and its complex derivatives. It should be noted that the positive medical properties of organometallic compounds of germanium are confirmed by numerous studies, therefore, the development of the methods of synthesis, as well as investigations of physicochemical and pharmacological properties of these compounds are at the center of attention.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2020 ◽  
Vol 24 (5) ◽  
pp. 473-486 ◽  
Author(s):  
Ligia S. da Silveira Pinto ◽  
Thatyana R. Alves Vasconcelos ◽  
Claudia Regina B. Gomes ◽  
Marcus Vinícius N. de Souza

Azetidin-2-ones (β-lactams) and its derivatives are an important group of heterocyclic compounds that exhibit a wide range of pharmacological properties such as antibacterial, anticancer, anti-diabetic, anti-inflammatory and anticonvulsant. Efforts have been made over the years to develop novel congeners with superior biological activities and minimal potential for undesirable side effects. The present review aimed to highlight some recent discoveries (2013-2019) on the development of novel azetidin-2-one-based compounds as potential anticancer agents.


2019 ◽  
Vol 23 (8) ◽  
pp. 860-900 ◽  
Author(s):  
Chander P. Kaushik ◽  
Jyoti Sangwan ◽  
Raj Luxmi ◽  
Krishan Kumar ◽  
Ashima Pahwa

N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.


Sign in / Sign up

Export Citation Format

Share Document