scholarly journals Betulinic Acid-Azaprostanoid Hybrids: Synthesis and Pharmacological Evaluation as Anti-inflammatory Agents

Author(s):  
Tatyana S. Khlebnicova ◽  
Yuri A. Piven ◽  
Fedor A. Lakhvich ◽  
Iryna V. Sorokina ◽  
Tatiana S. Frolova ◽  
...  

Background: Prevention and treatment of chronic inflammatory diseases require effective and low-toxic medicines. Molecular hybridization is an effective strategy to enhance the biological activity of new compounds. Triterpenoid scaffolds are in the focus of attention owing to their anti-inflammatory, antiviral, antiproliferative, and immunomodulatory activities. Heteroprostanoids have different pleiotropic effects in acute and chronic inflammatory processes. Objective: The study aimed to develop structurally new and low toxic anti-inflammatory agents via hybridization of betulinic acid with azaprostanoic acids. Methods: A series of betulinic acid-azaprostanoid hybrids was synthesized. The synthetic pathway included the transformation of betulin via Jones' oxidation into betulonic acid, reductive amination of the latter and coupling obtained by 3β-amino-3-deoxybetulinic acid with the 7- or 13-azaprostanoic acids and their homo analogues. The hybrids 1-9 were investigated in vivo on histamine-, formalin- and concanavalin A-induced mouse paw edema models and two models of pain - the acetic acid-induced abdominal writhing and the hotplate test. The hybrids were in vitro evaluated for cytotoxic activity on cancer (MCF7, U- 87 MG) and non-cancer humane cell lines. Results: In the immunogenic inflammation model, the substances showed a pronounced anti-inflammatory effect, which was comparable to that of indomethacin. In the models of the exudative inflammation, none of the compounds displayed a statistically significant effect. The hybrids produced weak or moderate analgesic effects. All the agents revealed low cytotoxicity on human immortalized fibroblasts and cancer cell lines compared with 3β- amino-3-deoxybetulinic acid and doxorubicin. Conclusion: The results indicate that the principal anti-inflammatory effect of hybrids is substantially provided with the triterpenoid scaffold and in some cases with the azaprostanoid scaffold, but the latter makes a significant contribution to reducing the toxicity of hybrids. Hybrid 1 is of interest as a potent low toxic agent against immune-mediated inflammation.

Author(s):  
E.N. Kurmanova ◽  
E.V. Ferubko ◽  
L.B. Strelkova ◽  
R.K. Kurmanov ◽  
O.P. Sheichenko

Змееголовник молдавский (Dracocephalum moldavica L.) в народной медицине используется в качестве противовоспалительного, ранозаживляющего, отхаркивающего и седативного средства. В ФГБНУ ВИЛАР разработан змееголовника молдавского травы экстракт сухой под условным названием «Люкатил» (сумма фенольных соединений 64,12% в пересчёте на цинарозид). Цель работы - изучение острой токсичности и противовоспалительной активности экстракта змееголовника для разработки на его основе лекарственного препарата. Методика. Проведено определение параметров острой токсичности и противовоспалительной активности экстракта. При изучении острой токсичности экстракта по методу Кербера использованы белые нелинейные мыши-самцы в количестве 30 особей. «Люкатил» вводили животным внутрижелудочно в дозах 500, 1000, 1500 и 2000 мг/кг. Для выявления противовоспалительной активности экстракта змееголовника молдавского использована in vitro ферментная биотест-система на основе индуцибельной NO-синтазы. Для выявления противовоспалительной активности экстракта in vivo использованы нелинейные мыши-самцы. Оценку влияния экстракта в дозе 200 мг/кг на экссудативную стадию воспаления проводили на модели 1% формалинового отёка. В качества препарата сравнения использовали индометацин (5 мг/кг). Формалиновый отёк вызывали однократным субплантарным введением под апоневроз задней правой лапки мыши 0,05 мл 1% формалина в качестве флогогенного агента. Величину отёка определяли по разнице в массе лапок контрольных и опытных животных и рассчитывали процент снижения степени отёка. Результаты. При однократном введении экстракт «Люкатил» не приводил к гибели животных, изменения внешнего вида и поведенческих реакций мышей не наблюдалось. В соответствии с классификацией токсичности химических веществ по ГОСТ 12.1.007-76 «Люкатил» является малотоксичным веществом. In vitro установлена высокая противовоспалительная активность экстракта, при этом остаточная активность iNOS снижалась до 25%. Экстракт в дозе 200 мг/кг in vivo обладал статистически значимым противовоспалительным эффектом. Он подавлял развитие экссудативной фазы воспаления на 33,7%, по сравнению с контрольной группой животных, уступая противовоспалительному эффекту индометацина. Заключение. Змееголовника молдавского травы экстракт сухой под условным названием «Люкатил» является малотоксичным веществом, обладает выраженным противовоспалительным эффектом в опытах in vitro, in vivo и является перспективным объектом для дальнейшего фармакологического изучения в качестве противовоспалительного лекарственного средства.Moldavian dragonhead (Dracocephalum moldavica L.) is used in traditional medicine as an anti-inflammatory, wound-healing, expectorant, and sedative means. In our Institute, a Moldavian dragonhead herb dry extract (total phenolic content, 64.12% in cynaroside equivalent) was developed and conventionally named Lyukatil. Objective. To study acute toxicity and anti-inflammatory activity of the dragonhead extract for developing a drug based on this extract. Method. Parameters of acute toxicity and anti-inflammatory activity of the extract were assessed. The study of acute toxicity of the extract was performed using the Kerber method on male white mongrel mice (n=30). Lyukatil was administered to the animals intragastrically at doses of 500 mg/kg, 1000 mg/kg, 1500 mg/kg, and 2000 mg/kg. Anti-inflammatory activity of the Moldavian dragonhead extract was determined in vitro using an enzyme Biotest system based on inducible NO synthase. Mongrel male mice were used to study the anti-inflammatory activity of the extract in vivo. The effect of the extract at a dose of 200 mg/kg on the exudative phase of inflammation was evaluated on a model of 1% formalin-induced edema. Indomethacin 5 mg/kg was used as a reference drug. Formalin edema was induced by a single subplantar injection of 0.05 ml of 1% formalin as a phlogogenic agent under the aponeurosis of the right hind leg. The degree of edema was determined by the difference in leg weights in control and experimental animals; then the decrease in edema was calculated in per cent. Results. A single administration of the extract Lyukatil did not cause death of animals, changes in the appearance or in behavioral responses, shortness of breath, or drowsiness. In accordance with the toxicity classification for chemical substances as per GOST Standard 12.1.007-76, Lyukatil is a low-toxic substance. The extract at a dose of 200 mg/kg exerted a significant anti-inflammatory effect as shown by suppression of the exudative phase of formalin-induced inflammation by 33.7% compared to the control group. However, this effect was inferior to the anti-inflammatory effect of indomethacin. Conclusions. The Moldavian dragonhead herb dry extract under the conventional name of Lyukatil is a low-toxic substance that has a significant anti-inflammatory effect both in vitro and in vivo and is a promising target for further pharmacological studies as an anti-inflammatory drug.


2010 ◽  
Vol 2010 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gong ◽  
Yingru Zheng ◽  
Fan Chao ◽  
Yuan Li ◽  
Zhizhen Xu ◽  
...  

HMGB1, composed of the A box, B box, and C tail domains, is a critical proinflammatory cytokine involved in diverse inflammatory diseases. The B box mediates proinflammatory activity, while the A box alone acts as a specific antagonist of HMGB1. The C tail contributes to the spatial structure of A box and regulates HMGB1 DNA binding specificity. It is unknown whether the C tail can enhance the anti-inflammatory effect of A box. In this study, we generated fusion proteins consisting of the A box and C tail, in which the B box was deleted and the A box and C tail were linked either directly or by the flexible linker sequence(Gly4Ser)3. In vitro and in vivo experiments showed that the two fusion proteins had a higher anti-inflammatory activity compared to the A box alone. This suggests that the fused C tail enhances the anti-inflammatory effect of the A box.


2020 ◽  
Vol 7 (1) ◽  
pp. 1-8
Author(s):  
Sae Asayama ◽  
Ayaka Iwasaki ◽  
Shunya Sahara ◽  
Koichi Nakaoji ◽  
Masamitsu Ichihashi ◽  
...  

Background: Atopic Dermatitis (AD) is a chronic inflammatory skin disease that causes functional disruption of the skin barrier. We previously found that ethanol Extracts of Mallotus Philippinensis Bark (EMPB) promoted migration of mesenchymal stem cells and improved wound healing probably through anti-inflammatory action. However, direct evidence of the anti-inflammatory effect of EMPB and the underlying mechanisms of this action remain unknown. In the present study, we evaluated whether EMPB has an effective action on anti-inflammation using an in vitro and in vivo model. We found that topical application of EMPB improved house dust miteinduced AD-like skin inflammation in NC/Nga mice. In addition, EMPB significantly inhibited various kinds of inflammatory mediators such as interleukin-1ß, inducible nitric oxide synthases, and nuclear factorkappa B in lipopolysaccharide-stimulated macrophage cells. Moreover, EMPB exhibited marked radical scavenging ability. Taken together, these results suggest that EMPB may be useful in the treatment of skin inflammatory diseases such as AD. Keywords: Mallotus Philippinensis Bark; Anti-Inflammation; Atopic Dermatitis; Macrophages


2021 ◽  
Vol 12 ◽  
Author(s):  
Louis Hilfiger ◽  
Zélie Triaux ◽  
Christophe Marcic ◽  
Eléa Héberlé ◽  
Fathi Emhemmed ◽  
...  

Context: Menthol, the main monoterpene found in Mentha piperita L. (M. piperita) is known to modulate nociceptive threshold and is present in different curative preparations that reduce sensory hypersensitivities in pain conditions. While for pulegone, a menthol-like monoterpene, only a limited number of studies focus on its putative analgesic effects, pulegone is the most abundant monoterpene present in Calamintha nepeta (L.) Savi (C. nepeta), a plant of the Lamiaceae family used in traditional medicine to alleviate rheumatic disorders, which counts amongst chronic inflammatory diseases.Objectives: Here, we analyzed the monoterpenes composition of C. nepeta and M. piperita. We then compared the putative anti-hyperalgesic effects of the main monoterpenes found, menthol and pulegone, in acute inflammatory pain conditions.Methods:C. nepeta and M. piperita extracts were obtained through pressurized liquid extraction and analyzed by gas chromatography-mass spectrometry. The in vitro anti-inflammatory activity of menthol or pulegone was evaluated by measuring the secretion of the tumour necrosis factor alpha (TNF α) from LPS-stimulated THP-1 cells. The in vivo anti-hyperalgesic effects of menthol and pulegone were tested on a rat inflammatory pain model.Results: Pulegone and menthol are the most abundant monoterpene found in C. nepeta (49.41%) and M. piperita (42.85%) extracts, respectively. In vitro, both pulegone and menthol act as strong anti-inflammatory molecules, with EC50 values of 1.2 ± 0.2 and 1.5 ± 0.1 mM, respectively, and exert cytotoxicity with EC50 values of 6.6 ± 0.3 and 3.5 ± 0.2 mM, respectively. In vivo, 100 mg/kg pulegone exerts a transient anti-hyperalgesic effect on both mechanical (pulegone: 274.25 ± 68.89 g, n = 8; vehicle: 160.88 ± 35.17 g, n = 8, p < 0.0001), thermal heat (pulegone: 4.09 ± 0.62 s, n = 8; vehicle: 2.25 ± 0.34 s, n = 8, p < 0.0001), and cold (pulegone: 2.25 ± 1.28 score, n = 8; vehicle: 4.75 ± 1.04 score, n = 8, p = 0.0003). In a similar way, 100 mg/kg menthol exerts a transient anti-hyperalgesic effect on both mechanical (mechanical: menthol: 281.63 ± 45.52 g, n = 8; vehicle: 166.25 ± 35.4 g, n = 8, p < 0.0001) and thermal heat (menthol: 3.65 ± 0.88 s, n = 8; vehicle: 2.19 ± 0.26 s, n = 8, <0.0001).Conclusion: Here, we show that both pulegone and menthol are anti-inflammatory and anti-hyperalgesic monoterpenes. These results might open the path towards new compound mixes to alleviate the pain sensation.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Author(s):  
Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  
...  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


2021 ◽  
Author(s):  
Reinier Gesto-Borroto ◽  
Gabriela Meneses ◽  
Alejandro Espinosa-Cerón ◽  
Guillermo Granados ◽  
Jacquelynne Cervantes-Torres ◽  
...  

Abstract The genus Galphimia is widely distributed in Mexico, and is represented by 22 species, including medicinal species. The sedative and anti-inflammatory effects of galphimines produced by the species Galphimia glauca have been documented. Formerly, molecular studies using DNA barcodes demonstrated that nine populations botanically classified as Galphimia glauca belong to four different species of the genus Galphimia, and that only one exhibited the sedative properties; however, all the collected species showed anti-inflammatory activity. Other bioactive compounds like quercetin, galphins, galphimidins and glaucacetalins have been identified from methanolic extracts of plants botanically classified as Galphimia glauca. The aim of this work was to determine the anti-inflammatory activity of methanolic extracts of nine collected Galphimia spp. populations grown in Mexico. The possible modes of action were analyzed by evaluating the inhibition of LPS-induced inflammation processes both in vitro and in vivo. The nine populations were evaluated by an in vitro model using RAW 264.7 murine macrophage cells, and two populations (a galphimine-producing and a non-galphimine-producing population) were selected for the in vivo experiments of systemic inflammation and neuroinflammation in mice. Results suggest that an anti-inflammatory in vitro effect was present in all the studied populations, evidenced by the inhibition of nitrite production. An inhibitory systemic inflammation in mice was exerted by the two analyzed populations. In the neuroinflammation model, the anti-inflammatory effect was demonstrated in methanolic extract of the non-galphimine-producing population. For the populations of Galphimia spp. studied herein, the anti-inflammatory effect could not be correlated to the presence of galphimines.


Author(s):  
Boussoualim Naouel ◽  
Trabsa Hayat ◽  
Krache Imane ◽  
Ouhida Soraya ◽  
Arrar Lekhmissi ◽  
...  

Background: Anchusa azurea Mill. (AA) is a medicinal plant largely used traditionally in folk medicine in Algeria, it is locally named: hamham. It is effective in the treatment of various diseases. Objectives: The aim of the present study is to determine the antioxidant, anti-inflammatory and anti-hemolytic effects of phenolic fractions from Anchusa azurea Mill. Methods: In this study, various extracts from Anchusa azurea Mill. (AA) using solvents with increasing polarity were prepared. The quantification of polyphenols and flavonoids was determined. The anti-radical activity of the different extracts was evaluated using DPPH and by measuring the inhibition of the oxidative degradation of β-carotene. The In vitro antihemolytic effect of the plant extracts is determined (CrE, ChE, AcE and AqE). For each extract, four concentrations were tested: 10.59, 21.18, 42.37, 84.74 µg/ml. Vitamin C is used as a standard. Free-radical attack was measured by measuring the HT50 (Half-Hemolysis Time). The anti-inflammatory effect using PMA on mice of the methanolic extract (CrE) was evaluated. Results: The quantification of polyphenols and flavonoids showed that ethyl acetate extract (AcE) contains a higher amount of polyphenols. However, chloroform extract (ChE) presents a higher amount of flavonoids. AcE showed an important scavenging activity using the DPPH radical (IC50= 68.35 µg/ml). The results showed that AcE also exhibited very great inhibition on the oxidation of β-carotene/linoleic acid (84.33%). All extracts increased the HT50 values (Half-Hemolysis Time) in a dose-dependent manner. The three highest concentrations (21.18, 42.37 and 84.74 µg / ml) of ChE caused a very significant delay (p ≤ 0.001) of hemolysis compared to the negative control and the positive control "VIT C". The anti-inflammatory effect using PMA on mice showed that the methanolic extract (CrE) of AA reduced the weight of the ear edema. Conclusions: This plant has a strong pharmacological power, which supports its traditional medicinal use.


2021 ◽  
Vol 16 (10) ◽  
pp. 1934578X2110559
Author(s):  
Le Minh Ha ◽  
Ngo Thi Phuong ◽  
Nguyen Thi Thu Hien ◽  
Pham Thi Tam ◽  
Do Thi Thao ◽  
...  

In this study, we aimed at evaluating in vitro and in vivo anti-inflammatory activity of various extracts of the rhizomes of Globba pendula Roxb. Three extracts ( n-hexane, ethyl acetate, and water) were screened for their inhibitory effect on NO production by lipopolysaccharide-stimulated RAW 264.7 macrophages. The ethyl acetate extract of G. pendula rhizomes (EGP) showed a potential effect with an IC50 value of 32.45 µg/mL. For in vivo study, the ethyl acetate extract was further investigated for its anti-inflammatory effect using collagen antibody-induced arthritic mice (CAIA). The level of arthritis in experimental mice significantly reduced ( P < .05) after treatment with EGP at a dose of 500 mg/kg body weight (b.w.). This study also revealed that EGP is orally non-toxic. Ethyl p-methoxy cinamate was identified as the main constituent of EGP, which may result in its anti-inflammatory effect.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Stephanie Flore Djuichou Nguemnang ◽  
Eric Gonzal Tsafack ◽  
Marius Mbiantcha ◽  
Ateufack Gilbert ◽  
Albert Donatien Atsamo ◽  
...  

Dissotis thollonii Cogn. (Melastomataceae) is a tropical plant widely used in traditional Cameroonian medicine to relieve and treat many pathologies. It is widespread in the western region where it is used to treat typhoid fever, gastrointestinal disorders, and inflammatory diseases. The purpose of this study is to scientifically demonstrate the anti-inflammatory and antiarthritic properties of the aqueous and ethanolic extracts of the leaves of Dissotis thollonii. The anti-inflammatory properties were evaluated in vitro by inhibition tests for cyclooxygenase, 5-lipoxygenase, protein denaturation, extracellular ROS production, and cell proliferation; while antiarthritic properties were evaluated in vivo in rats using the zymosan A-induced monoarthritis test and the CFA-induced polyarthritis model. This study shows that aqueous and ethanolic extracts at a concentration of 1000 μg/ml inhibit the activity of cyclooxygenase (47.07% and 63.36%) and 5-lipoxygenase (66.79% and 77.7%) and protein denaturation (42.51% and 44.44%). Similarly, both extracts inhibited extracellular ROS production (IC50 = 5.74 μg/ml and 2.96 μg/ml for polymorphonuclear leukocytes, 7.47 μg/ml and 3.28 μg ml for peritoneal macrophages of mouse) and cell proliferation (IC50 = 16.89 μg/ml and 3.29 μg/ml). At a dose of 500 mg/kg, aqueous and ethanolic extracts significantly reduce edema induced by zymosan A (69.30% and 81.80%) and CFA (71.85% and 79.03%). At the same dose, both extracts decreased sensitivity to mechanical hyperalgesia with 69.00% and 70.35% inhibition, respectively. Systemic and histological analyzes show that both extracts maintain the studied parameters very close to normal and greatly restored the normal architecture of the joint in animals. Dissotis thollonii would therefore be a very promising source for the treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document