zymosan a
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jin Li ◽  
Yuhui Li ◽  
Zhaoyu Fan ◽  
Shenghui Chen ◽  
Xinyu Yan ◽  
...  

The apextrin C-terminal (ApeC) domain is a class of newly discovered protein domains with an origin dating back to prokaryotes. ApeC-containing proteins (ACPs) have been found in various marine and aquatic invertebrates, but their functions and the underlying mechanisms are largely unknown. Early studies suggested that amphioxus ACP1 and ACP2 bind to bacterial cell walls and have a role in immunity. Here we identified another two amphioxus ACPs (ACP3 and ACP5), which belong to the same phylogenetic clade with ACP1/2, but show distinct expression patterns and sequence divergence (40-50% sequence identities). Both ACP3 and ACP5 were mainly expressed in the intestine and hepatic cecum, and could be up-regulated after bacterial challenge. Both prokaryotic-expressed recombinant ACP3 and ACP5 could bind with several species of bacteria and yeasts, showing agglutinating activity but no microbicidal activity. ELISA assays suggested that their ApeC domains could interact with peptidoglycan (PGN), but not with lipoteichoic acid (LTA), lipopolysaccharides (LPS) and zymosan A. Furthermore, they can only bind to Lys-type PGN from Staphylococcus aureus, but not to DAP-type PGN from Bacillus subtilis and not to moieties of PGN such as MDPs, NAMs and NAGs. This recognition spectrum is different from that of ACP1/2. We also found that when expressed in mammalian cells, ACP3 could interact with TRAF6 via a conserved non-ApeC region, which inhibited the ubiquitination of TRAF6 and hence suppressed downstream NF-κB activation. This work helped define a novel subfamily of ACPs, which have conserved structures, and have related yet diversified molecular functions. Its members have dual roles, with ApeC as a lectin and a conserved unknown region as a signal transduction regulator. These findings expand our understanding of the ACP functions and may guide future research on the role of ACPs in different animal clades.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 695
Author(s):  
Javier Conde ◽  
Isabel Fernández-Pisonero ◽  
Myriam Cuadrado ◽  
Antonio Abad ◽  
Javier Robles-Valero ◽  
...  

Genetic evidence suggests that three members of the VAV family (VAV1, VAV2 and VAV3) of signal transduction proteins could play important roles in rheumatoid arthritis. However, it is not known currently whether the inhibition of these proteins protects against this disease and, if so, the number of family members that must be eliminated to get a therapeutic impact. To address this issue, we have used a collection of single and compound Vav family knockout mice in experimental models for antigen-dependent (methylated bovine serum albumin injections) and neutrophil-dependent (Zymosan A injections) rheumatoid arthritis in mice. We show here that the specific elimination of Vav1 is sufficient to block the development of antigen-induced arthritis. This protection is likely associated with the roles of this Vav family member in the development and selection of immature T cells within the thymus as well as in the subsequent proliferation and differentiation of effector T cells. By contrast, we have found that depletion of Vav2 reduces the number of neutrophils present in the joints of Zymosan A-treated mice. Despite this, the elimination of Vav2 does not protect against the joint degeneration triggered by this experimental model. These findings indicate that Vav1 is the most important pharmacological target within this family, although its main role is limited to the protection against antigen-induced rheumatoid arthritis. They also indicate that the three Vav family proteins do not play redundant roles in these pathobiological processes.


Author(s):  
Christina Weber-Chrysochoou ◽  
Yasemin Darcan-Nicolaisen ◽  
Johanna Wohlgensinger ◽  
Eva Maria Tinner ◽  
Remo Frei ◽  
...  

Introduction: Environmental exposure to mites and fungi has been proposed to critically contribute to the development of IgE-mediated asthma. A common denominator of such organisms is chitin. Human chitinases have been reported to be upregulated by interleukin-13 secreted in the context of Th2-type immune responses and to induce asthma. We assessed whether chitin-containing components induced chitinases in an innate immune-dependent way and whether this results in bronchial hyperresponsiveness. Materials and Methods: Monocyte/macrophage cell lines were stimulated with chitin-containing or bacterial components in vitro. Chitinase activity in the supernatant and the expression of the chitotriosidase gene were measured by enzyme assay and quantitative PCR, respectively. Non-sensitized mice were stimulated with chitin-containing components intranasally, and a chitinase inhibitor was administered intraperitoneally. As markers for inflammation leukocytes were counted in the bronchoalveolar lavage (BAL) fluid, and airway hyperresponsiveness was assessed via methacholine challenge. Results: We found both whole chitin-containing dust mites as well as the fungal cell wall component zymosan A but not endotoxin-induced chitinase activity and chitotriosidase gene expression in vitro. The intranasal application of zymosan A into mice led to the induction of chitinase activity in the BAL fluid and to bronchial hyperresponsiveness, which could be reduced by applying the chitinase inhibitor allosamidin. Discussion: We propose that environmental exposure to mites and fungi leads to the induction of chitinase, which in turn favors the development of bronchial hyperreactivity in an IgE-independent manner.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sera Park ◽  
Dae-Young Park ◽  
Jaeryung Kim ◽  
Kyung In Woo ◽  
Yoon-Duck Kim ◽  
...  

2020 ◽  
Author(s):  
TA. Mariqueo ◽  
G. Améstica ◽  
J. Pino ◽  
R. Barra ◽  
J. Stehberg ◽  
...  

AbstractBackgroundFemales have higher inflammatory pain representation. However, sex differences in central pain sensitization and the regulation of nociceptive response to peripheral inflammation remain unclear. The central pain sensitization is mediated by inhibitory neurotransmission and glial cell activity dysregulation where spinal glycine and GLP-1 receptors have described play a critical role.ObjectivesThe aim of this study was to compare the mechanical withdrawal nociceptive threshold with spinal glycine receptor subunits and GLP-1 expression in adult male and female rats after inflammatory hypersensitivity.MethodsSex differences in inflammatory nociception were evaluated before and after intraplantar hindpaw Zymosan A injection in Sprague-Dawley rats. Mechanical paw withdrawal thresholds were tested using von Frey filaments.Western blot was used to measure GlyRs subunits protein levels in the spinal cord. GLP-1 was determined using the Magnetic Luminex Assay.ResultsA reduced nociceptive threshold was observed in males and females rats after 4 hours of inflammatory Zymosan A injection. However, this reduction was significantly major in females. Western blot analysis demonstrated significantly increased α1, α2, α3 and β GlyR subunit levels in male rats. Female rats only increased α3 and β GlyR subunits after Zymosan A injection. GLP-1 was reduced in female spinal tissues after an inflammatory injury.ConclusionsOur study indicates that sex differences in nociceptive threshold after inflammatory Zymosan A rat pain sensitization is related to the sex differences in glycine receptor subunits and GLP-1 expression at the spinal cord.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Stephanie Flore Djuichou Nguemnang ◽  
Eric Gonzal Tsafack ◽  
Marius Mbiantcha ◽  
Ateufack Gilbert ◽  
Albert Donatien Atsamo ◽  
...  

Dissotis thollonii Cogn. (Melastomataceae) is a tropical plant widely used in traditional Cameroonian medicine to relieve and treat many pathologies. It is widespread in the western region where it is used to treat typhoid fever, gastrointestinal disorders, and inflammatory diseases. The purpose of this study is to scientifically demonstrate the anti-inflammatory and antiarthritic properties of the aqueous and ethanolic extracts of the leaves of Dissotis thollonii. The anti-inflammatory properties were evaluated in vitro by inhibition tests for cyclooxygenase, 5-lipoxygenase, protein denaturation, extracellular ROS production, and cell proliferation; while antiarthritic properties were evaluated in vivo in rats using the zymosan A-induced monoarthritis test and the CFA-induced polyarthritis model. This study shows that aqueous and ethanolic extracts at a concentration of 1000 μg/ml inhibit the activity of cyclooxygenase (47.07% and 63.36%) and 5-lipoxygenase (66.79% and 77.7%) and protein denaturation (42.51% and 44.44%). Similarly, both extracts inhibited extracellular ROS production (IC50 = 5.74 μg/ml and 2.96 μg/ml for polymorphonuclear leukocytes, 7.47 μg/ml and 3.28 μg ml for peritoneal macrophages of mouse) and cell proliferation (IC50 = 16.89 μg/ml and 3.29 μg/ml). At a dose of 500 mg/kg, aqueous and ethanolic extracts significantly reduce edema induced by zymosan A (69.30% and 81.80%) and CFA (71.85% and 79.03%). At the same dose, both extracts decreased sensitivity to mechanical hyperalgesia with 69.00% and 70.35% inhibition, respectively. Systemic and histological analyzes show that both extracts maintain the studied parameters very close to normal and greatly restored the normal architecture of the joint in animals. Dissotis thollonii would therefore be a very promising source for the treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document