Emerging Pathophysiological Targets of Psoriasis for Future Therapeutic Strategies

2020 ◽  
Vol 20 (4) ◽  
pp. 409-422 ◽  
Author(s):  
Monu Yadav ◽  
Ishu Sardana ◽  
Amarjeet Sharma ◽  
Nidhi Sharma ◽  
Kalpana Nagpal ◽  
...  

Psoriasis is a chronic autoimmune skin disorder which involves complex interactions between genes, keratinocytes, T-cells and inflammatory cells. It affects 2-3% population worldwide. Molecular biology and cellular immunology of psoriasis, when linked with biotechnology and genetic studies can help researchers to understand the pathophysiology of psoriasis. T-cells activation, keratinocyte hyperproliferation, and angiogenesis are the core mechanisms entailed in the development of psoriasis lesion. Investigators are trying to overcome the challenges of complex pathophysiology pathways involved in this disorder. The different possible hypotheses for its pathophysiology such as growth factors, enzymes, inflammation, and genetic factors mediated pathophysiology have been described in the present review paper in detail. Clinically available drugs only control the symptoms of psoriasis but are not effective for the treatment of the disorder completely and are also associated with some side effects such as itching, renal disorders, hematologic, nonmelanoma skin cancer, pulmonary, gastrointestinal toxicity, etc. This paper made an effort to understand the pathophysiological targets, discuss the research done so far and the treatments available for the effective management of psoriasis.

Author(s):  
Shasha Liu ◽  
Chaoqi Zhang ◽  
Boqiao Wang ◽  
Huanyu Zhang ◽  
Guohui Qin ◽  
...  

AbstractGlioma stem cells (GSCs) contribute to the malignant growth of glioma, but little is known about the interaction between GSCs and tumor microenvironment. Here, we found that intense infiltration of regulatory T cells (Tregs) facilitated the qualities of GSCs through TGF-β secretion that helped coordinately tumor growth. Mechanistic investigations indicated that TGF-β acted on cancer cells to induce the core cancer stem cell-related genes CD133, SOX2, NESTIN, MUSASHI1 and ALDH1A expression and spheres formation via NF-κB–IL6–STAT3 signaling pathway, resulting in the increased cancer stemness and tumorigenic potential. Furthermore, Tregs promoted glioma tumor growth, and this effect could be abrogated with blockade of IL6 receptor by tocilizumab which also demonstrated certain level of therapeutic efficacy in xenograft model. Additionally, expression levels of CD133, IL6 and TGF-β were found to serve as prognosis markers of glioma patients. Collectively, our findings reveal a new immune-associated mechanism underlying Tregs-induced GSCs. Moreover, efforts to target this network may be an effective strategy for treating glioma.


1992 ◽  
Vol 175 (4) ◽  
pp. 907-915 ◽  
Author(s):  
S Yoshino ◽  
L G Cleland

The effects of treatment with a monoclonal antibody (R73 mAb) against T cell receptor alpha/beta (TCR-alpha/beta) on both established adjuvant arthritis (EAA) and established collagen-induced arthritis (ECIA) in rats have been investigated. Rats were treated with R73 mAb when arthritis reached a peak. Treatment with the anti-TCR-alpha/beta mAb markedly suppressed EAA, whereas ECIA was not affected by the mAb treatment. Histologically, R73 mAb-treated rats with EAA showed mild hyperplasia of synovial tissues, sparse infiltration of inflammatory cells, and minimal erosion of cartilage, whereas arthritic rats treated with PBS and an irrelevant control mAb against Giardia had marked hyperplasia of synovium with pannus, massive inflammatory cell infiltrate, and severe destruction of cartilage and subchondral bone. R73 mAb-treated rats with ECIA exhibited pronounced formation of pannus containing many inflammatory cells and marked cartilage and subchondral damage similar to those in arthritic rats that received the control treatments. Treatment with R73 mAb depleted markedly alpha/beta+ T cells in both peripheral blood and synovial tissues of rats with EAA and ECIA. R73 mAb treatment was associated with marked reduction in arthritogen-specific delayed-type hypersensitivity responses in both EAA and ECIA. The titers of antibodies against type II collagen produced in rats with ECIA were not affected by the mAb. Thus, alpha/beta+ T cells appear to have a central role in EAA, but not in chronic ECIA.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3377
Author(s):  
Panagiota Economopoulou ◽  
Ioannis Kotsantis ◽  
Amanda Psyrri

The tumor microenvironment (TME) encompasses cellular and non-cellular components which play an important role in tumor evolution, invasion, and metastasis. A complicated interplay between tumor cells and adjacent TME cells, such as stromal cells, immune cells, inflammatory cells, and cytokines, leads to severe immunosuppression and the proliferation of cancer cells in several solid tumors. An immunosuppressive TME has a significant impact on treatment resistance and may guide response to immunotherapy. In head and neck cancer (HNC), immunotherapeutic drugs have been incorporated in everyday clinical practice. However, despite an exceptional rate of durable responses, only a low percentage of patients respond. In this review, we will focus on the complex interactions occurring in this dynamic system, the TME, which orchestrate key events that lead to tumor progression, immune escape, and resistance. Furthermore, we will summarize current clinical trials that depict the TME as a potential therapeutic target for improved patient selection.


1972 ◽  
Vol 21 (1-2) ◽  
pp. 21-52 ◽  
Author(s):  
Bernardo Beiguelman

SummaryThe present paper reviews the research lines which have been explored to evaluate to what extent genetic factors are intervening on the mechanism of resistance and susceptibility to leprosy.It presents a critical discussion of the investigations on the familial association of leprosy, familial association of leprosy types, intrafamilial contagion of leprosy, concordance of leprosy in twinpairs, racial differences on leprosy prevalence and lepromatous rate, pedigree studies, association of leprosy to genetic markers, Australia antigen, and dermatoglyphic patterns. Space was also allotted to review family and twin-pair studies on the Mitsuda reaction, as well as to the investigation on the in vitro behaviour of blood macrophages against killed M. leprae.Some areas in which further research on leprosy and genetics may be considered as prioritary are outlined with some detail.


2008 ◽  
Vol 205 (11) ◽  
pp. 2633-2642 ◽  
Author(s):  
Jason R. Lees ◽  
Paul T. Golumbek ◽  
Julia Sim ◽  
Denise Dorsey ◽  
John H. Russell

The localization of inflammatory foci within the cerebellum is correlated to severe clinical outcomes in multiple sclerosis (MS). Previous studies of experimental autoimmune encephalomyelitis (EAE), a model of MS, revealed distinct clinical outcomes correlated with the capacity of the animal to produce IFN-γ. Outcomes were linked to localization of inflammatory cells in either the spinal cord (wild type [WT]) or the cerebellum and brain stem (IFN-γ deficient). We demonstrate, using an adoptive transfer system, that the ability of the central nervous system (CNS) to sense pathogenic T cell–produced IFN-γ during EAE initiation determines the sites of CNS pathogenesis. Transfer of WT Th1 cells into IFN-γ receptor–deficient mice results in pathogenic invasion of the brain stem and cerebellum with attendant clinical symptoms, which are identical to the disease observed after transfer of IFN-γ–deficient T cells to WT hosts. Inflammation of the spinal cord associated with classical EAE is abrogated in both IFN-γ–deficient systems. Cotransfer of CNS antigen-specific WT Th1 cells with IFN-γ–deficient T cells is sufficient to restore spinal cord invasion and block cerebellar and brain stem invasion. These data demonstrate that interaction between IFN-γ and host CNS cells during the initiation of EAE can selectively promote or suppress neuroinflammation and pathogenesis.


2008 ◽  
Vol 32 (4) ◽  
pp. 287-293 ◽  
Author(s):  
Michele Bolan ◽  
Daniele de Almeida Lima ◽  
Cláudia Pinto Figueiredo ◽  
Gabriella Di Giunta ◽  
Maria José de Carvalho Rocha

BACKGROUND: The periapical lesion is the result of a local inflammatory reaction caused by bacteria and its products present on the root canal. The interaction between inflammatory cells and bacteria elicit both specific and non-specific immune responses. OBJETIVE: Due to the lack of studies evaluating the role of the immune system in periapical lesions of primary teeth and considering the potentially systemic effects that these infections can cause in children, especially because of the immaturity of their immune system, we sought to evaluate the presence of T cells, B cells and macrophages on periradicular lesions in primary teeth. STUDY DESIGN: 14 periradicular lesions were analyzed. The immunohistochemistry technique was performed using CD45RO, CD20, CD68 monoclonal antibodies aiming to identify T cells, B cells and macrophages, respectively. Cells were quantified by microscopic analysis of histological sections. RESULTS: Mean percentage of positive cells CD45RO was 11.76; CD20 was 5.25; CD68 was 10.92. Our results showed that T and B cells and macrophages comprise the majority of the inflammatory infiltrate. CONCLUSION: We concluded that both humoral and cell mediated immune reactions take place in periradicular lesions of primary teeth. The immune system plays an important role on the periradicular inflammatory processes in primary teeth.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Dan Ye ◽  
Yun Xu

Both resident microglia and infiltrated peripheral T cells have been proved to play important roles in the pathology of stroke. It is well accepted that activated microglia exert dual roles, including pro-inflammatory (M1) and anti-inflammatory (M2) functions. However, the mechanism regulating microglial polarization remains elusive. T cells are recruited into the ischemic area within 24 h after stroke, which also exhibit pro-inflammatory (Th1, Th17) and anti-inflammatory (Th2, Treg) functions. The interaction between microglia and T cells after stroke is barely understood, which may be served as modifiers of pathobiology in stroke. Here we described the role of T cells in the microglial polarization in mouse experimental stroke. We isolated T cells from spleens of MCAO mice at 24 h and 72 h, respectively, and then added to cultured microglia for 24 h. Our results indicated that splenic T cells obtained at 24 h after MCAO selectively promoted microglia polarize to a pro-inflammatory (M1) state, while T cells obtained at 72 h, favored microglia polarize to an anti-inflammatory (M2) state. The results of flow cytometry showed that Th1 and Th17 cells increased at 24 h after MCAO while Th2 and Treg cells increased at 72 h after MCAO. This study implicates that distinct subtypes of T cells contribute differentially to microglial polarization after stroke onset. Therefore, treatments aiming at modulating the ratios of T cells to anti-inflammatory cells have the potential to induce microglial polarize to M2 phenotype and improve the outcome of ischemic stroke.


2019 ◽  
Vol 95 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Kazuo Kurihara ◽  
Toshiharu Fujiyama ◽  
Pawit Phadungsaksawasdi ◽  
Taisuke Ito ◽  
Yoshiki Tokura

2019 ◽  
Vol 9 (3) ◽  
pp. 204589401986435 ◽  
Author(s):  
Djuro Kosanovic ◽  
Ujjwal Deo ◽  
Henning Gall ◽  
Balachandar Selvakumar ◽  
Susanne Herold ◽  
...  

It has been shown previously that increased circulating endothelial cells-derived extracellular vesicles represent an important pathological attribute of pulmonary hypertension. Although it is a well-known fact that inflammatory cells may also release extracellular vesicles, and pulmonary hypertension is a disease associated with abnormal inflammation, there is no profound knowledge with regard to the role of inflammatory cells-derived extracellular vesicles. Therefore, our study demonstrated that circulating levels of extracellular vesicles derived from T-cells are enhanced in various pulmonary hypertension forms and that endothelial cells-derived extracellular vesicles may have distinctive profiles in different clinical subgroups of pulmonary hypertension, which still remains as a poorly treatable and life-threatening disorder.


1975 ◽  
Vol 141 (6) ◽  
pp. 1464-1469 ◽  
Author(s):  
N K Day ◽  
R L'Esperance ◽  
R A Good ◽  
A F Michael ◽  
J A Hansen ◽  
...  

Herediatary C2-deficiency has been shown to be transmitted asn an autosomal recessive characteristic. Recent evidence indicates that some genetic factors involved in the control of the complement (C) system in both man and mice are governed by genes localized within the major histocompatibility regionmthis study describes a large pedigree of the paternal family of a C2-deficient patient with systemic lupus erythematosusl It is shown that this condition is transmitted as an autosomal recessive trait, the heterozygous carriers having approximately half normal levels of C2. Furthermore, this trait was shown to be inherited in close linkage with an infrequent HL-A typw, 2,4A2. The maternal, C2-defective chromosome was shown to be transmitted by HL-AW10, W18 haplotypemthis same haplotype was described in a similar study by Fu et al. (6) to be associated with C2 deficiencymfinally, a third haplotype HL-A2,W18 carrying a defective C2 gene was demonstrated in a part of this pedigree.


Sign in / Sign up

Export Citation Format

Share Document