Is the Cerebellum Involved in the Nervous Control of the Immune System Function?

2020 ◽  
Vol 20 (4) ◽  
pp. 546-557
Author(s):  
Anna Rizzi ◽  
Matteo Saccia ◽  
Vincenzo Benagiano

Background: According to the views of psychoneuroendocrinoimmunology, many interactions exist between nervous, endocrine and immune system the purpose of which is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both the nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target the endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that controls through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders. Objective: Various researches have reported that the hypothalamus is controlled by the cerebellum through a feedback nervous circuit, namely the hypothalamocerebellar circuit, which bi-directionally connects regions of the hypothalamus, including the immunoregulatory ones, and related regions of the cerebellum. An objective of the present review was to analyze the anatomical bases of the nervous and neuroendocrine mechanisms for the control of the immune system and, in particular, of the interaction between hypothalamus and cerebellum to achieve the immunoregulatory function. Conclusion: Since the hypothalamus represents the link through which the immune functions may influence the psychic functions and vice versa, the cerebellum, controlling several regions of the hypothalamus, could be considered as a primary player in the regulation of the multiple functional interactions postulated by psychoneuroendocrinoimmunology.

2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 699
Author(s):  
Cielo García-Montero ◽  
Oscar Fraile-Martínez ◽  
Ana M. Gómez-Lahoz ◽  
Leonel Pekarek ◽  
Alejandro J. Castellanos ◽  
...  

The most prevalent diseases of our time, non-communicable diseases (NCDs) (including obesity, type 2 diabetes, cardiovascular diseases and some types of cancer) are rising worldwide. All of them share the condition of an “inflammatory disorder”, with impaired immune functions frequently caused or accompanied by alterations in gut microbiota. These multifactorial maladies also have in common malnutrition related to physiopathology. In this context, diet is the greatest modulator of immune system–microbiota crosstalk, and much interest, and new challenges, are arising in the area of precision nutrition as a way towards treatment and prevention. It is a fact that the westernized diet (WD) is partly responsible for the increased prevalence of NCDs, negatively affecting both gut microbiota and the immune system. Conversely, other nutritional approaches, such as Mediterranean diet (MD), positively influence immune system and gut microbiota, and is proposed not only as a potential tool in the clinical management of different disease conditions, but also for prevention and health promotion globally. Thus, the purpose of this review is to determine the regulatory role of nutritional components of WD and MD in the gut microbiota and immune system interplay, in order to understand, and create awareness of, the influence of diet over both key components.


2021 ◽  
Author(s):  
Qiushuang Zhang ◽  
Yuanyuan Guo ◽  
Lijuan Zhu ◽  
Xinlong Liu ◽  
Jiapei Yang ◽  
...  

Immune system plays a key role in restraining the tumor progression. Therefore, enhancing immune functions using immune stimulants, such as unmethylated CpG oligonucleotides, have emerged as a promising strategy for...


1988 ◽  
Vol 51 (1) ◽  
pp. 32-36 ◽  
Author(s):  
R. V. REDDY ◽  
M. J. TAYLOR ◽  
R. P. SHARMA

Citrinin, a nephrotoxic fungal metabolite produced by several species of Penicillium and Aspergillus, has been found to contaminate foods used by humans and animals. The present study investigated potential effects of this compound on the immune system. Male CD-1 mice received 0, 0.12, 0.6 or 3.0 mg of citrinin/kg i.p. every other day for 2–4 weeks. Food consumption and body or organ weights were not affected but kidneys were enlarged. Splenic cells from mice exposed to citrinin for 2 or 4 weeks were cultured with or without the mitogens, phytohemagglutinin (PHA), pokewecd mitogen (PWM) or lipopolysaccharide (LPS). Exposure to citrinin stimulated splenic lymphocyte proliferation. Antibody production by splenic cells in animals sensitized to sheep red blood cells (SRBC) increased in the two highest dose groups. Delayed hypersensitivity reaction, measured as a foot-pad swelling, in response to SRBC sensitization and subsequent challenge were not affected by citrinin treatment. In vitro addition of citrinin (>1 × 10−5M) to splenic lymphocytes was cytotoxic. These findings suggest that citrinin mildly stimulates the immune system but does not have consistent immunotoxic effects at the doses tested.


2019 ◽  
Vol 20 (7) ◽  
pp. 1632 ◽  
Author(s):  
Michelle Erickson ◽  
William Banks

Age is associated with altered immune functions that may affect the brain. Brain barriers, including the blood–brain barrier (BBB) and blood–CSF barrier (BCSFB), are important interfaces for neuroimmune communication, and are affected by aging. In this review, we explore novel mechanisms by which the aging immune system alters central nervous system functions and neuroimmune responses, with a focus on brain barriers. Specific emphasis will be on recent works that have identified novel mechanisms by which BBB/BCSFB functions change with age, interactions of the BBB with age-associated immune factors, and contributions of the BBB to age-associated neurological disorders. Understanding how age alters BBB functions and responses to pathological insults could provide important insight on the role of the BBB in the progression of cognitive decline and neurodegenerative disease.


2020 ◽  
Vol 8 (6) ◽  
pp. 921 ◽  
Author(s):  
Tanvi Shinde ◽  
Philip M Hansbro ◽  
Sukhwinder Singh Sohal ◽  
Peter Dingle ◽  
Rajaraman Eri ◽  
...  

Viral respiratory infections (VRIs) can spread quickly and cause enormous morbidity and mortality worldwide. These events pose serious threats to public health due to time lags in developing vaccines to activate the acquired immune system. The high variability of people’s symptomatic responses to viral infections, as illustrated in the current COVID-19 pandemic, indicates the potential to moderate the severity of morbidity from VRIs. Growing evidence supports roles for probiotic bacteria (PB) and prebiotic dietary fiber (DF) and other plant nutritional bioactives in modulating immune functions. While human studies help to understand the epidemiology and immunopathology of VRIs, the chaotic nature of viral transmissions makes it difficult to undertake mechanistic study where the pre-conditioning of the metabolic and immune system could be beneficial. However, recent experimental studies have significantly enhanced our understanding of how PB and DF, along with plant bioactives, can significantly modulate innate and acquired immunity responses to VRIs. Synbiotic combinations of PB and DF potentiate increased benefits primarily through augmenting the production of short-chain fatty acids (SCFAs) such as butyrate. These and specific plant polyphenolics help to regulate immune responses to both restrain VRIs and temper the neutrophil response that can lead to acute respiratory distress syndrome (ARDS). This review highlights the current understanding of the potential impact of targeted nutritional strategies in setting a balanced immune tone for viral clearance and reinforcing homeostasis. This knowledge may guide the development of public health tactics and the application of functional foods with PB and DF components as a nutritional approach to support countering VRI morbidity.


Author(s):  
Siti Rohaiza Ahmad

Maternal nutrition will not only affects pregnancy outcomes (such as birth weight) but will also affect the state of the fetus in their adult life in terms of diseases occurrence and also immune system development. Inadequate nutrition particularly will have a negative impact on the proliferation of the various cell populations responsible for the immune functions as well as the accumulation of high concentrations of inflammatory components. Maternal nutrition affects immunity ‘programming' during the period of pre-natal and post-natal life. Over the last decade, epidemiological and experimental studies have helped to expedite more understanding of immunity ‘programming.' External exposures such as smoking, alcohol and drugs during fetal life have also shown to have an impact on immunity ‘programming.' In this review, the relationship between fetal programming and the immune system, such as effects on the various immune-cellular components through some evidence from epidemiological and experimental models will be discussed.


2017 ◽  
Vol 29 (5) ◽  
pp. 1589-1600 ◽  
Author(s):  
Thomas G. O'Connor ◽  
Kristin Scheible ◽  
Ana Vallejo Sefair ◽  
Michelle Gilchrist ◽  
Emma Robertson Blackmore ◽  
...  

AbstractThere is now a clear focus on incorporating, and integrating, multiple levels of analysis in developmental science. The current study adds to research in this area by including markers of the immune and neuroendocrine systems in a longitudinal study of temperament in infants. Observational and parent-reported ratings of infant temperament, serum markers of the innate immune system, and cortisol reactivity from repeated salivary collections were examined in a sample of 123 infants who were assessed at 6 months and again when they were, on average, 17 months old. Blood from venipuncture was collected for analyses of nine select innate immune cytokines; salivary cortisol collected prior to and 15 min and 30 min following a physical exam including blood draw was used as an index of neuroendocrine functioning. Analyses indicated fairly minimal significant associations between biological markers and temperament at 6 months. However, by 17 months of age, we found reliable and nonoverlapping associations between observed fearful temperament and biological markers of the immune and neuroendocrine systems. The findings provide some of the earliest evidence of robust biological correlates of fear behavior with the immune system, and identify possible immune and neuroendocrine mechanisms for understanding the origins of behavioral development.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4136-4136
Author(s):  
Felipe Vences Catalan ◽  
Ranjani Rajapaksa ◽  
Minu K. Srivastava ◽  
Aurelien Marabelle ◽  
Shoshana Levy

Abstract Tumor metastasis is the major cause of cancer mortality. While immune cells are aimed at halting metastases, the proliferating cancer cells at the primary tumor site recruit cells that counteract the adaptive anti-tumor immune response. Indeed, it is well established that tumors induce the accumulation and proliferation of immune suppressive cells, such as regulatory T cells (Tregs) and Myeloid Derived Suppressor cells (MDSC). The tetraspanin CD81 belongs to a family of proteins that play an important role in the immune system as evident by impaired immune functions of DCs, B and T cells in several tetraspanin-deficient mice (CD37, CD81, CD151, and CD82). While many studies have addressed the function of CD81 in infection and in the immune system, few have focused on its role in tumorigenesis and metastasis. Here we report that the growth of subcutaneously implanted breast cancer tumors (4T1) is slightly impaired in CD81 knockout (CD81KO) compared to wild type mice. Moreover, CD81KO mice develop very few lung metastases compared to their wild type and heterozygous counterparts. Both wild type and CD81KO tumor-bearing mice show substantial increases in Tregs, and MDSCs. However, these Tregs and MDSCs differ functionally - those derived from wild type mice are effective suppressors of T cell proliferation. By contrast, Tregs and MDSCs derived from tumor-bearing CD81KO mice do not suppress the proliferation of Teff cells. Thus, it is highly likely that while Teff cells are greatly restrained by Tregs and MDSCs in wild type tumor-bearing mice, the impairment of both suppressive cell populations in CD81KO mice enables the anti-tumor function thereby opposing metastases. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Pernille Nilsson ◽  
Mark Ravinet ◽  
Yujun Cui ◽  
Paul Berg ◽  
Yujiang Zhang ◽  
...  

Pathogens may elicit a high selective pressure on hosts and can alter genetic diversity over short evolutionary timescales. Intraspecific variation in immune response can be observed as variable survivability from specific infections. The great gerbil (Rhombomys opimus) is a rodent plague host with a heterogenic but highly resistant phenotype. Here, we investigate if the most plague-resistant phenotypes are linked to genomic differences between survivors and susceptible individuals by exposure of wild-caught great gerbils from Northwest China to plague (Yersinia pestis). Whole genome sequencing of ten survivors and ten moribund individuals revealed a low genome-wide mean divergence, except for a subset of genomic regions that showed elevated differentiation. Gene ontology (GO) analysis of candidate genes within regions of increased differentiation, demonstrated enrichment of pathways involved in transcription and translation and their regulation), as well as genes directly involved in immune functions, cellular metabolism and the regulation of apoptosis. Differential RNA expression analysis revealed that the early activated great gerbil immune response to plague consisted of classical components of the innate immune system. Our approach combining challenge experiments with transcriptomics and population level sequencing, provides new insight into the genetic background of plague-resistance and confirms its complex nature, most likely involving multiple genes and pathways of both the immune system and regulation of basic cellular functions.


Sign in / Sign up

Export Citation Format

Share Document