A Review of the Research on the Influencing Factors of Lubrication Performance for Sliding Bearings

2021 ◽  
Vol 16 ◽  
Author(s):  
Xiaodong Yu ◽  
Shiwei Zhan ◽  
Dianbin Huang ◽  
Fan Sun ◽  
Fakun Wang ◽  
...  

Background: Sliding bearing is a kind of bearing that works under sliding friction, which has the characteristics of stable operation, safety and reliability and noiseless. With the technological progress of the machinery industry, modern machinery and equipment is developing in the direction of high speed and heavy load, its power is getting higher and higher, and the working environment is getting worse, so plain bearings are more and more widely used. Objective: In order to improve the lubricating performance of sliding bearings, the influencing factors of lubricating performance of sliding bearings are summarized and commented. Methods: The research progress and achievements at home and abroad are summarized from three aspects: influencing factors of lubrication performance of radial sliding bearings, thrust sliding bearings and influencing factors of lubricating oil on lubrication performance of sliding bearings, which provides reference for the future development of sliding bearings. Results: The study discusses the experimental method, simulation process and experimental results of the factors affecting the lubrication performance of sliding bearing. Conclusion: The texture, deformation, surface morphology of oil cavity, eccentric load and flow state of sliding bearings all affect the lubricating performance of sliding bearings, and lubricating oil also affects the lubricating performance of sliding bearings.

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 67
Author(s):  
Fengming Du ◽  
Changduo Chen ◽  
Kaiguang Zhang

The sliding bearing is an important component in machines. The characteristics of the oil film fluid of the sliding bearing is the key factor affecting lubrication, which will affect the wear and reliability of the sliding bearing. Herein, the lubricating oil of the sliding bearing is studied, the oil film flow model considering the cavitation effect is established, the pressure and temperature distribution of the oil film under different rotational speeds is explored, and its influence on oil film pressure and temperature are analyzed. Furthermore, wear tests are carried out to measure the wear amount of the bearing bush under different rotational speeds, and the influence of the fluid characteristics of the lubricating oil film on bearing wear is explored. The simulation and experimental study in this paper can provide a reference for the design of sliding bearings.


2019 ◽  
Vol 18 (3) ◽  
pp. 195-199
Author(s):  
A. S. Kalinichenko ◽  
U. L. Basiniu ◽  
E. I. Mardasevich

In mechanical engineering, various types of bearing units are used in moving connections and sliding pairs (sliding bearings, guides, bushings) are sufficiently widely used. This allows increasing the stiffness of the units, reducing their dimensions, improving heat dissipation, etc. But there are higher friction losses, probability in the increases of situations in which there is a jamming of friction surfaces for application of sliding friction pairs compared to the rolling bearings. These problems are even more important for application of sliding bearings in precision equipment, which typically operates under temperature and humidity stabilized conditions. The aim of the work is the development of methodological approaches to the creation and rational design and manufacture of sliding friction pairs based on the composite antifriction materials’ coatings for the application in vertical precision program-controlled electrospindles for high-speed machining. Questions of development and manufacturing of friction units for precision electrospindles with high rigidity on the basis of composite materials are considered. It is shown that acceptable cutting speed (750 m/min or more) for the quality standpoint of processing with a diamond-like tool can be achieved by placing the cutting edge of the tool on diameter of 200 mm. As a result, two tasks solved: the rigidity of the electrospindle for ultra-high accuracy of mechanical blade processing is achieved; high smoothness of work is provided, which allows achieving nanometric surface roughness with a decrease of deviations to 1 µm from the middle surface line. It is extremely important for a number of special applications.


2014 ◽  
Vol 541-542 ◽  
pp. 549-552
Author(s):  
Guo Fu Hu ◽  
Shi Ping Yang

In view of the problems serious leakage of lubricating oil in the current slide bearing of a ship motor shaft sealing.This paper analyzed the reasons of bearing oil through the work principle of sliding bearing and the sealing structure. And put forward to solve leakage measures, provide a certain reference value for the seal structure design of sliding bearings and other rotation machine .


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1314 ◽  
Author(s):  
Lincong Liu ◽  
Ming Zhou ◽  
Xiao Li ◽  
Long Jin ◽  
Guoshi Su ◽  
...  

Two-dimensional (2D) materials are ultra-thin crystals with layered structures that have a monolayer and multiple layers of atomic thickness. Due to excellent performance, 2D materials represented by graphene have caused great interest from researchers in various fields, such as nano-electronics, sensors, solar cells, composite materials, and so on. In recent years, when graphite was used for liquid phase lubrication, there have been many disadvantages limiting its lubrication properties, such as stable dispersion, fluidity and so on. Therefore, 2D materials have been used as high-performance liquid-phase lubricant additives, which become a perfect entry point for high-performance nano-lubricants and lubrication applications. This review describes the application of 2D materials as additives in the field of liquid-phase lubrication (such as lubricating oil and water lubrication) in terms of experimental content, lubrication performance, and lubrication mechanism. Finally, the challenges and prospects of 2D materials in the lubrication field were also proposed.


2020 ◽  
Vol 68 (4) ◽  
pp. 845-876
Author(s):  
Nikola Žegarac

Introduction/purpose: The paper presents the application of modern methods in the diagnostics of sliding bearings and the analysis of influencing factors that can cause errors in such an application. Possibilities to determine with certainty when and where problems affect sliding bearings during system operation are presented. It is also shown how the system will continue to function over time. Causes of failures and the manner of their elimination are predicted, as well as the time for planned maintenance of technical systems. Method: The new method solves the problem of sliding bearing diagnostics by measuring the dynamic trajectories of the sleeve in the sliding bearing and by measuring vibration parameters on the inner and outer surfaces of the technical system. The dynamic trajectories of the bearing sleeve are measured with non-contact probes; therefore, the centering of probes in relation to the geometric center of the bearing is very important. Vibration parameters, directly related to the clearance in the sliding bearing, are measured on the inner and outer surfaces of the system. The choice of vibration parameters and measuring points is very important. This method has a number of advantages over other diagnostic methods, as it is easy to access measuring points. Results: By measuring the dynamic trajectory of the sleeves in the plain bearing and vibration parameters on the inner and outer surfaces, the bearing clearance quantities are determined, including: normal condition, initial clearance size, its further increase, bearing clearance sizes, and the moment when the condition parameters are close to the upper limit of the permissible bearing clearance. Conclusion: New diagnostic methods and monitoring systems can be widely applied to: internal combustion engines, all piston machines, hydroelectric power plants, thermal power plants, processing plants, and many other systems.


2013 ◽  
Vol 744 ◽  
pp. 95-99
Author(s):  
Pei Ming Sun ◽  
Xie Ben Wei ◽  
Shu Qin Chen

This paper analyzes the influence of lubricating oil film of the low-speed and heavy-load sliding bearing on a variety of factors. It introduces the operation of Bearing for lubricating oil film in monitoring method, common fault causes and treatment measures. Finally, the bearing cooling system structure is discussed, providing reference for practical engineering application. There are many reasons to cause the failure of the bearing lubrication such as bearing assembly defects, the error of size and cooling system problems. By detecting and contrast parameters, this study analyze the determine data and correct the fault. Through the use of reasonable structure of the oil tank and cooling water channel, we can improve the lubrication performance, and extend the bearing life. This paper analyzes the factors restricting the low speed and high load sliding bearing lubricant film, and solves the actual bearing lubrication problem.


2019 ◽  
Vol 12 (4) ◽  
pp. 378-382
Author(s):  
Shan Syedhidayat ◽  
Quan Wang ◽  
Al-Hadad M.A.A. Mohsen ◽  
Jinrong Wang

Background: One of the most common manufacturing equipment for polymer product is injection molding machine. In order to ensure the precise, stable and continuous operation of the injection molding machine, the maintenance of the lubrication system must be done well. The stability, reliability, rationality and low noise performance of the lubrication system of injection molding machine directly affect the quality of injection products, dimensional accuracy, molding cycle, working environment and maintenance. Objective: The purpose of this study is to introduce the methods of choice, maintenance of lubricating oil for injection molding machine from many literatures and patents in the recent years, such as lubricating oil device, lubricating composite and structure. Methods: An example of the 260M5 automatic injection molding machine is introduced for the inspection and maintenance of the lubrication system including lubricating oil and lubricating grease. Results: To ensure the lubrication of the injection molding machine, it needs to strictly observe the lubrication time and modulus of the injection molding machine. It needs to strictly control the temperature rise of the lubricating oil and select the correct lubricating oil and grease to ensure the lubrication quality. Conclusion: In the operation of the injection molding machine, it is necessary to check that the lubricating oil is sufficient and the lubricating points are working properly. It ensures sufficient lubrication of the injection molding machine and strictly observes the lubrication time and modulus of the injection molding machine. The stored lubricating oil should be sealed well to prevent air pollution.


1997 ◽  
Vol 33 (3) ◽  
pp. 214
Author(s):  
R. LaComb ◽  
D.K. Wagner ◽  
L. DiMarco ◽  
J. Connolly

2017 ◽  
Vol 45 ◽  
pp. 1760020
Author(s):  
Henrique Linares ◽  
Carlos Frajuca ◽  
Fabio S. Bortoli ◽  
Givanildo A. Santos ◽  
Francisco Y. Nakamoto

This work aims to design a magnetic suspension for an experiment to measure gravitys velocity. Such device must rotate two objects symmetrically with the greatest mass and largest radius as possible, at the speed of [Formula: see text], which means this device falls into the high-speed machines category. The guidelines and solutions proposed in this paper constitute a contribution to this class of engineering problems and were based on an extensive literature search, contacts with experts, the tutors and author’s experience, as well as on experimental results. The main solution proposed is a hybrid bearing that combines a radial passive magnetic bearing with an axial sliding bearing, here called MPS (Magnetic Passive and Sliding) bearing.


Sign in / Sign up

Export Citation Format

Share Document