A Hybrid Teaching Mode Based on Machine Learning Algorithm
Background: Hybrid teaching mode is a new trend under the Education Informatization environment, which combines the advantages of educators’ supervision offline and learners’ self-regulated learning online. Capturing learners’ learning behavior data becomes easy both from the traditional classroom and online platform. Methods: If machine learning algorithms can be applied to mine valuable information underneath those behavior data, it will provide scientific evidence and contribute to wise decision making as well as effective teaching process designing by educators. Results: This paper proposed a hybrid teaching mode utilizing machine learning algorithms, which uses clustering analysis to analyze the learner’s characteristics and introduces a support vector machine to predict future learning performance. The hybrid mode matches the predicted results to carry out the offline teaching process. Conclusion: Simulation results on about 356 students’ data on one specific course in a certain semester demonstrate that the proposed hybrid teaching mode performs very well by analyzing and predicting the learners’ performance with high accuracies.