scholarly journals A Sensitive Aβ Oligomerization Assay for Identification of Small Molecule Inhibitors

2009 ◽  
Vol 3 (1) ◽  
pp. 108-116 ◽  
Author(s):  
Amanda M. Gonzales ◽  
Robert A. Orlando

Amyloid deposits found in Alzheimer’s disease result from aggregation of Aβ peptide which leads to loss of synaptic function, chronic microglial activation and cognitive impairment. Because of this, identification of small molecule inhibitors of Aβ aggregation as potential therapeutics is a topic of current interest. The majority of inhibitor screening approaches rely on in vitro assays that lack the necessary sensitivity to distinguish low-molecular weight Aβ oligomers from larger, more advanced-stage fibrillar structures. Differentiating between these two structures is of vital concern since recent studies indicate that small, early-stage Aβ oligomers are the most neurotoxic form of peptide aggregate. To address this limitation, we have explored the adaptability of a recently described ELISA-based assay for discovery of small molecule inhibitors of Aβ oligomerization. Results show that this assay is highly sensitive as it is able to quantify Aβ oligomers with as little as 80 nM input peptide. In addition, data were obtained re-confirming the function of curcumin as a potent inhibitor of Aβ aggregation (IC50 = 2 μM) and defining its inhibitor:peptide functional stoichiometry. Further examination of other known anti-aggregation compounds showed that this assay is able to discriminate between inhibitors of early-stage, low-molecular weight oligomers and later-stage, high-molecular weight fibrillar structures. These findings indicate that this new ELISA-based assay is capable of identifying novel small molecule inhibitors that function during the initial stages of Aβ peptide assembly.

2020 ◽  
Vol 11 (27) ◽  
pp. 7158-7169 ◽  
Author(s):  
Hao Liu ◽  
Chengyuan Qian ◽  
Tao Yang ◽  
Yanqing Wang ◽  
Jian Luo ◽  
...  

A rational design of pincer-like scaffold-based small molecule with blood-brain barrier permeability that can specifically co-assemble with low molecular weight Aβ oligomers to form non-fibrillar, degradable, non-toxic co-aggregates.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Petr G. Lokhov ◽  
Dmitry L. Maslov ◽  
Steven Lichtenberg ◽  
Oxana P. Trifonova ◽  
Elena E. Balashova

A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is developed and used within a single laboratory. The holistic metabolomic LDT integrating the currently available data on human metabolic pathways, changes in the concentrations of low-molecular-weight compounds in the human blood during diseases and other conditions, and their prevalent location in the body was developed. That is, the LDT uses all of the accumulated metabolic data relevant for disease diagnosis and high-resolution mass spectrometry with data processing by in-house software. In this study, the LDT was applied to diagnose early-stage Parkinson’s disease (PD), which currently lacks available laboratory tests. The use of the LDT for blood plasma samples confirmed its ability for such diagnostics with 73% accuracy. The diagnosis was based on relevant data, such as the detection of overrepresented metabolite sets associated with PD and other neurodegenerative diseases. Additionally, the ability of the LDT to detect normal composition of low-molecular-weight compounds in blood was demonstrated, thus providing a definition of healthy at the molecular level. This LDT approach as a screening tool can be used for the further widespread testing for other diseases, since ‘omics’ tests, to which the metabolomic LDT belongs, cover a variety of them.


2020 ◽  
Vol 14 ◽  
Author(s):  
Katiuscia Pagano ◽  
Simona Tomaselli ◽  
Henriette Molinari ◽  
Laura Ragona

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, with no cure and preventive therapy. Misfolding and extracellular aggregation of Amyloid-β (Aβ) peptides are recognized as the main cause of AD progression, leading to the formation of toxic Aβ oligomers and to the deposition of β-amyloid plaques in the brain, representing the hallmarks of AD. Given the urgent need to provide alternative therapies, natural products serve as vital resources for novel drugs. In recent years, several natural compounds with different chemical structures, such as polyphenols, alkaloids, terpenes, flavonoids, tannins, saponins and vitamins from plants have received attention for their role against the neurodegenerative pathological processes. However, only for a small subset of them experimental evidences are provided on their mechanism of action. This review focuses on those natural compounds shown to interfere with Aβ aggregation by direct interaction with Aβ peptide and whose inhibitory mechanism has been investigated by means of biophysical and structural biology experimental approaches. In few cases, the combination of approaches offering a macroscopic characterization of the oligomers, such as TEM, AFM, fluorescence, together with high-resolution methods could shed light on the complex mechanism of inhibition. In particular, solution NMR spectroscopy, through peptide-based and ligand-based observation, was successfully employed to investigate the interactions of the natural compounds with both soluble NMR-visible (monomer and low molecular weight oligomers) and NMR-invisible (high molecular weight oligomers and protofibrils) species. The molecular determinants of the interaction of promising natural compounds are here compared to infer the chemical requirements of the inhibitors and the common mechanisms of inhibition. Most of the data converge to indicate that the Aβ regions relevant to perturb the aggregation cascade and regulate the toxicity of the stabilized oligomers, are the N-term and β1 region. The ability of the natural aggregation inhibitors to cross the brain blood barrier, together with the tactics to improve their low bioavailability are discussed. The analysis of the data ensemble can provide a rationale for the selection of natural compounds as molecular scaffolds for the design of new therapeutic strategies against the progression of early and late stages of AD.


2020 ◽  
Vol 21 (16) ◽  
pp. 5858 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Md. Tanvir Kabir ◽  
Md. Sohanur Rahman ◽  
Tapan Behl ◽  
Philippe Jeandet ◽  
...  

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder related to age, characterized by the cerebral deposition of fibrils, which are made from the amyloid-β (Aβ), a peptide of 40–42 amino acids. The conversion of Aβ into neurotoxic oligomeric, fibrillar, and protofibrillar assemblies is supposed to be the main pathological event in AD. After Aβ accumulation, the clinical symptoms fall out predominantly due to the deficient brain clearance of the peptide. For several years, researchers have attempted to decline the Aβ monomer, oligomer, and aggregate levels, as well as plaques, employing agents that facilitate the reduction of Aβ and antagonize Aβ aggregation, or raise Aβ clearance from brain. Unluckily, broad clinical trials with mild to moderate AD participants have shown that these approaches were unsuccessful. Several clinical trials are running involving patients whose disease is at an early stage, but the preliminary outcomes are not clinically impressive. Many studies have been conducted against oligomers of Aβ which are the utmost neurotoxic molecular species. Trials with monoclonal antibodies directed against Aβ oligomers have exhibited exciting findings. Nevertheless, Aβ oligomers maintain equivalent states in both monomeric and aggregation forms; so, previously administered drugs that precisely decrease Aβ monomer or Aβ plaques ought to have displayed valuable clinical benefits. In this article, Aβ-based therapeutic strategies are discussed and several promising new ways to fight against AD are appraised.


1990 ◽  
Vol 45 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
Magdolna Droppa ◽  
Jiri Masojidek ◽  
Gábor Horváth

Changes in membrane polypeptide composition during greening of etiolated maize were investigated to confirm the existence of the developmental polypeptides of 12 - 15 kDa described recently in virescent soybean mutant [M. Droppa, M. L. Ghirardi, G. Horváth, and A. Melis, Biochim. Biophys. Acta 932, 138 - 145 (1988)]. These low molecular weight polypeptides were the most abundant proteins at the early stage of greening, but were largely absent from fully developed thylakoids. During greening the relative concentration of the 12-15 kDa polypeptides were inversely proportional to that of LHC II, suggesting a role of these polypeptides in the assembly of the LHC II and/or chloroplast development.


The Analyst ◽  
2014 ◽  
Vol 139 (8) ◽  
pp. 1987-1992 ◽  
Author(s):  
Milena Stephan ◽  
Corinna Kramer ◽  
Claudia Steinem ◽  
Andreas Janshoff

Small molecule sensing is of great importance in pharmaceutical research.


2012 ◽  
Vol 287 (12) ◽  
pp. 8714-8723 ◽  
Author(s):  
Dimitry Ofengeim ◽  
Peng Shi ◽  
Benchun Miao ◽  
Jing Fan ◽  
Xiaofeng Xia ◽  
...  

2020 ◽  
Vol 27 (7) ◽  
pp. 658-673
Author(s):  
Ayesha Zafar ◽  
Maryum Jabbar ◽  
Yasmeen Manzoor ◽  
Huma Gulzar ◽  
Shahzad Gul Hassan ◽  
...  

Background: Searching the biomarker from complex heterogeneous material for early detection of disease is a challenging task in the field of biomedical sciences. Objective: The study has been arranged to explore the proteomics serum derived profiling of the differential expressed and low molecular weight protein in breast cancer patient. Methods: Quantitative proteome was analyzed using the Nano LC/Mass and Bioinformatics tool. Results: This quantification yields 239 total protein constituting 29% of differentially expressed protein, with 82% downregulated differential protein and 18% up-regulated differential protein. While 12% of total protein were found to be cancer inducing proteins. Gene Ontology (GO) described that the altered proteins with 0-60 kDa mass in nucleus, cytosol, ER, and mitochondria were abundant that chiefly controlled the RNA, DNA, ATP, Ca ion and receptor bindings. Conclusion: The study demonstrate that the organelle specific, low molecular weighted proteins are significantly important biomarker. That act as strong agents in the prognosis and diagnosis of breast cancer at early stage.


Sign in / Sign up

Export Citation Format

Share Document