scholarly journals Stem/Progenitor Cells, Atherosclerosis and Cardiovascular Regeneration

2010 ◽  
Vol 4 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Olena Dotsenko

Regenerative cell based therapy has potential to become effective adjuvant treatment for patients with atherosclerotic disease. Although data from animal studies support this notion, clinical studies undertaken in patients with acute and chronic coronary artery disease do not conclusively demonstrate benefits of such therapy. There are many questions on the stem cell translational roadmap. The basic mechanisms of stem cell-dependent tissue regeneration are not well understood. There is a debate regarding characterization of specific cell types conferring therapeutic effects. In particular, the role of endothelial progenitor cells as a specific reparative cell subtype is questioned, and the role of myeloid cell linage in fostering of vasculo- and angiogenesis is being increasingly appreciated. Intense discussions surround the place of stem/progenitor cells in atherosclerosis progression, plaque destabilization and vessel remodeling. This paper summarizes the current knowledge on the regenerative stem/progenitor cell definitions, mechanisms of stem cell trafficking, homing and their involvement in atherosclerosis progression.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Mirershadi ◽  
Mahdi Ahmadi ◽  
Aysa Rezabakhsh ◽  
Hadi Rajabi ◽  
Reza Rahbarghazi ◽  
...  

Abstract Asthma is a chronic inflammatory disease associated with airway hyper-responsiveness, chronic inflammatory response, and excessive structural remodeling. The current therapeutic strategies in asthmatic patients are based on controlling the activity of type 2 T helper lymphocytes in the pulmonary tissue. However, most of the available therapies are symptomatic and expensive and with diverse side outcomes in which the interruption of these modalities contributes to the relapse of asthmatic symptoms. Up to date, different reports highlighted the advantages and beneficial outcomes regarding the transplantation of different stem cell sources, and relevant products from for the diseases’ alleviation and restoration of injured sites. However, efforts to better understand by which these cells elicit therapeutic effects are already underway. The precise understanding of these mechanisms will help us to translate stem cells into the clinical setting. In this review article, we described current knowledge and future perspectives related to the therapeutic application of stem cell-based therapy in animal models of asthma, with emphasis on the underlying therapeutic mechanisms.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2152
Author(s):  
Fernando C. Baltanás ◽  
Cynthia Mucientes-Valdivieso ◽  
L. Francisco Lorenzo-Martín ◽  
Natalia Fernández-Parejo ◽  
Rósula García-Navas ◽  
...  

Prior reports showed the critical requirement of Sos1 for epithelial carcinogenesis, but the specific functionalities of the homologous Sos1 and Sos2 GEFs in skin homeostasis and tumorigenesis remain unclear. Here, we characterize specific mechanistic roles played by Sos1 or Sos2 in primary mouse keratinocytes (a prevalent skin cell lineage) under different experimental conditions. Functional analyses of actively growing primary keratinocytes of relevant genotypes—WT, Sos1-KO, Sos2-KO, and Sos1/2-DKO—revealed a prevalent role of Sos1 regarding transcriptional regulation and control of RAS activation and mechanistic overlapping of Sos1 and Sos2 regarding cell proliferation and survival, with dominant contribution of Sos1 to the RAS-ERK axis and Sos2 to the RAS-PI3K/AKT axis. Sos1/2-DKO keratinocytes could not grow under 3D culture conditions, but single Sos1-KO and Sos2-KO keratinocytes were able to form pseudoepidermis structures that showed disorganized layer structure, reduced proliferation, and increased apoptosis in comparison with WT 3D cultures. Remarkably, analysis of the skin of both newborn and adult Sos2-KO mice uncovered a significant reduction of the population of stem cells located in hair follicles. These data confirm that Sos1 and Sos2 play specific, cell-autonomous functions in primary keratinocytes and reveal a novel, essential role of Sos2 in control of epidermal stem cell homeostasis.


2017 ◽  
Vol 2 (2) ◽  
pp. 112-116
Author(s):  
András Mester ◽  
Balázs Oltean-Péter ◽  
Ioana Rodean ◽  
Diana Opincariu ◽  
Alexandra Stănescu ◽  
...  

AbstractStem cell-based therapy is a new therapeutic option that can be used in patients with cardiac diseases caused by myocardial injury. Cardiac magnetic resonance imaging (MRI) is a new noninvasive imaging method with an increasingly widespread indication. The aim of this review was to evaluate the role of cardiac MRI in patients with myocardial infarction undergoing stem cell therapy. We studied the role of MRI in the assessment of myocardial viability, stem cell tracking, assessment of cell survival rate, and monitoring of the long-term effects of stem cell therapy. Based on the current knowledge in this field, this noninvasive, in vivo cardiac imaging technique has a large indication in this group of patients and plays an important role in all stages of stem cell therapy, from the indication to the long-term follow-up of patients.


2019 ◽  
Vol 20 (6) ◽  
pp. 1420 ◽  
Author(s):  
Bernhard Wernly ◽  
Moritz Mirna ◽  
Richard Rezar ◽  
Christine Prodinger ◽  
Christian Jung ◽  
...  

Although reperfusion therapy has improved outcomes, acute myocardial infarction (AMI) is still associated with both significant mortality and morbidity. Once irreversible myocardial cell death due to ischemia and reperfusion sets in, scarring leads to reduction in left ventricular function and subsequent heart failure. Regenerative cardiovascular medicine experienced a boost in the early 2000s when regenerative effects of bone marrow stem cells in a murine model of AMI were described. Translation from an animal model to stem cell application in a clinical setting was rapid and the first large trials in humans suffering from AMI were conducted. However, high initial hopes were early shattered by inconsistent results of randomized clinical trials in patients suffering from AMI treated with stem cells. Hence, we provide an overview of both basic science and clinical trials carried out in regenerative cardiovascular therapies. Possible pitfalls in specific cell processing techniques and trial design are discussed as these factors influence both basic science and clinical outcomes. We address possible solutions. Alternative mechanisms and explanations for effects seen in both basic science and some clinical trials are discussed here, with special emphasis on paracrine mechanisms via growth factors, exosomes, and microRNAs. Based on these findings, we propose an outlook in which stem cell therapy, or therapeutic effects associated with stem cell therapy, such as paracrine mechanisms, might play an important role in the future. Optimizing stem cell processing and a better understanding of paracrine signaling as well as its effect on cardioprotection and remodeling after AMI might improve not only AMI research, but also our patients’ outcomes.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jun Kang ◽  
Wenguo Fan ◽  
Qianyi Deng ◽  
Hongwen He ◽  
Fang Huang

Stem cells are biological cells that can self-renew and can differentiate into multiple cell lineages. Stem cell-based therapy is emerging as a promising alternative therapeutic option for various disorders. Mesenchymal stem cells (MSCs) are multipotent adult stem cells that are isolated from various tissues and can be used as an alternative to embryonic stem cells. Stem cells from the apical papilla (SCAPs) are a novel population of MSCs residing in the apical papilla of immature permanent teeth. SCAPs present the characteristics of expression of MSCs markers, self-renewal, proliferation, migration, differentiation, and immunosuppression, which support the application of SCAPs in stem cell-based therapy, including the immunotherapy and the regeneration of dental tissues, bone, neural, and vascular tissues. In view of these properties and therapeutic potential, SCAPs can be considered as promising candidates for stem cell-based therapy. Thus the aim of our review was to summarize the current knowledge of SCAPs considering isolation, characterization, and multilineage differentiation. The prospects for their use in stem cell-based therapy were also discussed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2190-2190 ◽  
Author(s):  
Pieter K. Wierenga ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Gerald de Haan ◽  
Ronald P. van Os

Abstract Adhesion molecules have been implicated in the interactions of hematopoietic stem and progenitor cells with the bone marrow extracellular matrix and stromal cells. In this study we examined the role of very late antigen-5 (VLA-5) in the process of stem cell mobilization and homing after stem cell transplantation. In normal bone marrow (BM) from CBA/H mice 79±3 % of the cells in the lineage negative fraction express VLA-5. After mobilization with cyclophosphamide/G-CSF, the number of VLA-5 expressing cells in mobilized peripheral blood cells (MPB) decreases to 36±4%. The lineage negative fraction of MPB cells migrating in vitro towards SDF-1α (M-MPB) demonstrated a further decrease to 3±1% of VLA-5 expressing cells. These data are suggestive for a downregulation of VLA-5 on hematopoietic cells during mobilization. Next, MPB cells were labelled with PKH67-GL and transplanted in lethally irradiated recipients. Three hours after transplantation an increase in VLA-5 expressing cells was observed which remained stable until 24 hours post-transplant. When MPB cells were used the percentage PKH-67GL+ Lin− VLA-5+ cells increased from 36% to 88±4%. In the case of M-MPB cells the number increased from 3% to 33±5%. Although the increase might implicate an upregulation of VLA-5, we could not exclude selective homing of VLA-5+ cells as a possible explanation. Moreover, we determined the percentage of VLA-5 expressing cells immediately after transplantation in the peripheral blood of the recipients and were not able to observe any increase in VLA-5+ cells in the first three hours post-tranpslant. Finally, we separated the MPB cells in VLA-5+ and VLA-5− cells and plated these cells out in clonogenic assays for progenitor (CFU-GM) and stem cells (CAFC-day35). It could be demonstared that 98.8±0.5% of the progenitor cells and 99.4±0.7% of the stem cells were present in the VLA-5+ fraction. Hence, VLA-5 is not downregulated during the process of mobilization and the observed increase in VLA-5 expressing cells after transplantation is indeed caused by selective homing of VLA-5+ cells. To shed more light on the role of VLA-5 in the process of homing, BM and MPB cells were treated with an antibody to VLA-5. After VLA-5 blocking of MPB cells an inhibition of 59±7% in the homing of progenitor cells in bone marrow could be found, whereas homing of these subsets in the spleen of the recipients was only inhibited by 11±4%. For BM cells an inhibition of 60±12% in the bone marrow was observed. Homing of BM cells in the spleen was not affected at all after VLA-5 blocking. Based on these data we conclude that mobilization of hematopoietic progenitor/stem cells does not coincide with a downregulation of VLA-5. The observed increase in VLA-5 expressing cells after transplantation is caused by preferential homing of VLA-5+ cells. Homing of progenitor/stem cells to the bone marrow after transplantation apparantly requires adhesion interactions that can be inhibited by blocking VLA-5 expression. Homing to the spleen seems to be independent of VLA-5 expression. These data are indicative for different adhesive pathways in the process of homing to bone marrow or spleen.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1394-1394
Author(s):  
Sachiko Ezoe ◽  
Itaru Matsumura ◽  
Hirokazu Tanaka ◽  
Yusuke Satoh ◽  
Takafumi Yokota ◽  
...  

Abstract Sir2 (silent information regulator 2) is a member of a gene family (sirtuins) encoding NAD(+)-dependent histone deacetylases, which leads to increased DNA stability and prolonged lifespan in Saccharomyces cerevisiae and Caenorhabditis elegans. In mammalians, SIRT1 has also been found to function as a deacetylase for numerous protein targets involved in various cellular pathways, including stress responses, apoptosis, and neural axonal degeneration. However, the effects of SIRT1 on hematopoiesis remains unknown. We previously reported that the SIRT1 inhibitor, nicotinamide(NA), promoted the differentiation of murine hematopoietic stem/progenitor cells, and its activator, Resveratrol, suppressed the differntiation. In this report, we analysed the differentiation of stem/progenitor cells derived from SIRT1 KO mice. Because SIRT1 KO mice can survive less than a week after birth, we performed experiments using c-Kit(+)Lineage(−)Sca-1(+) cells (KSLs) derived from KO mice fetal liver. At first, we cultured KSLs with the cytokine cocktail containing SCF, IL-6, Flt3L, and TPO, which is utilized for the expansion of stem cells. After five day culture, we estimated the population which remains in KSL fraction. As a result, percentage of KSLs from KO fetal liver was less than 5%, while that from WT was about 15%. We also examined the colony formation of KO and WT fetal liver KSL cells using replating assays. At the first plating, total number of colonies developed from KO fetal liver KSLs was smaller than that from WT by 30–40%, and at the third plating, there could be detected no colonies from KO, while 20–30 colonies were observed from WT. Furthermore, we performed serial transplantation assays using WT and KO fetal liver KSLs. Although after primary transplant, we detected no significant difference in repopulation from KO KSLs compared to WT controls, three weeks after secondary transplant, % chimerism from KO KSLs was reduced to 1/2 compared with that from WT KSLs. These results suggested that Sirt1 suppresses the differentiation and promotes self-renew of hematopoietic stem/progenitor cells. To dissect the roles of target molecules of Sirt1 in suppression of differentiation, we first examined the mRNA expressions of some cell cycle-relating molecules in KO and WT fetal liver KSLs. As consequence, p16Ink4A and p19Arf were detected only in KO KSLs. Then we analyzed the roles of molecules which may effect those expressions. First, we examined the effects of MAPkinases inhibitors on the differentiation of KO and WT fetal liver KSLs. During the culture with SCF, IL-6, Flt3L, and TPO, the addition of p38 inhibitor(SB202190), or MEK1 inhibitor(PD98059), or JNK inhibitor did not change the effects of the SIRT1 targeting. Then it was suggested that MAPkinase pathways have little relation with the SIRT1-induced suppression of differentiation. Next we examined the role of p53, which was reported to combine with SIRT1 and to be deacetylated and repressed by SIRT1. KO and WT fetal liver KSLs were cultured with p53 inhibitor (pifithrin?), which partially cancelled the promotion of differntiation in SIRT1 KO KSLs. This result suggested that SIRT1 might inhibit differentiation of KSLs partially by antagonizing p53 activity. Next we examined the role of Foxo3a, a downstream molecule of SIRT1. Enforced expression of constitutive active form of Foxo3a(FKHRL1TM) also cancelled the promotion of differentiation in SIRT1 KO KSLs. As conclusion, we demonstrate that SIRT1 suppresses the differentiation of hematopoietic stem/progenitor cells by antagonizing p53 and enhancing Foxo3a activities, and contributes to maintenance of stem cell properties and stem cell pool.


2013 ◽  
Vol 49 (3) ◽  
pp. 235-247
Author(s):  
Hayam Abdel Meguid El Aggan ◽  
Mona Abdel Kader Salem ◽  
Nahla Mohamed Gamal Farahat ◽  
Ahmad Fathy El-Koraie ◽  
Ghaly Abd Al-Rahim Mohammed Kotb

2019 ◽  
Vol 73 ◽  
pp. 53-64
Author(s):  
Agnieszka Gornowicz ◽  
Anna Bielawska ◽  
Bożena Popławska ◽  
Krzysztof Bielawski

Mucin 1 (MUC1) has been recognized by the National Cancer Institute as one of the most promising molecular targets in cancer therapy. Its overexpression has been demonstrated in many epithelial tumors,especially in breast cancer, whichis associated with poor prognosis. Mucin 1 is an important barrier to the penetration of drugs and takes part in the inhibition of apoptosis in tumor cells. MUC1 triggers the activation of several pathways of intracellular signaling. MUC1 interactions with ICAM-1, E-selectin, galectin-3, EGFR, ERα estrogen receptor, p53 protein, heat shock proteins HSP70 and HSP90 have been demonstrated. The MUC1 membrane subunit contributes to the activation of the ERK1 and ERK2 kinases by the induction of the Ras-Raf-Mek-Erk pathway. In addition, the role of MUC1 in the activation of the WNT/β-catenin/TCF7L2 pathway and the induction of transcription of the cyclin D1 gene was confirmed. Numerous studies have shown that blockade of MUC1 by monoclonal antibodies or small molecule inhibitors may promote therapeutic effects and contribute to increased susceptibility of tumor cells to chemotherapeutic agents. The combined effect of the anti-MUC1 antibody with novel anticancer agents may have a better therapeutic effect than monotherapy. This article reviews the current knowledge about the role of MUC1 in the development and progression of cancer as well as potential novel strategies based on mucin 1 in antineoplastic therapy.


Sign in / Sign up

Export Citation Format

Share Document